Due to limitations of bone autografts and allografts, synthetic bone grafts using osteoconductive biomaterials have been designed. In this study, collagen-chitosan-calcium phosphate microparticle-based scaffolds fused with glycolic acid were compared to their counterparts without collagen in terms of degradation, cytocompatibility, porosity, and Young's modulus. It was found that 26-30% collagen was incorporated and that hydroxyapatite was present. Moreover, there were no differences between control and collagen scaffolds in degradation, cytocompatibility, porosity, and Young's modulus. In general, scaffolds exhibited 23% porosity, 0.6-1.2 MPa Young's modulus, 23% degradation over 4 weeks, and supported a four to seven fold increase in osteoblast cell number over 7 days in culture. Collagen can be incorporated into these bone graft substitute scaffolds, which show an improved degradation profile.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0885328212465662DOI Listing

Publication Analysis

Top Keywords

young's modulus
12
collagen-chitosan-calcium phosphate
8
phosphate microparticle-based
8
microparticle-based scaffolds
8
degradation cytocompatibility
8
cytocompatibility porosity
8
porosity young's
8
collagen incorporated
8
scaffolds
5
physical properties
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!