Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biological catalysis is a complex chemical process that involves not only electronic reorganization in the substrate but also the reorganization of the catalyst. This complexity is even larger in the case of post-transcriptional and post-translational modifications which may involve the interaction between two biomacromolecules. However, the development over the past decades of new computational methods and strategies is offering a detailed molecular picture of the catalytic event and a deep understanding of the mechanisms of chemical reactions in biological environments. Here we review the efforts made in the last years to model catalysis in post-transcriptional and post-translational processes. We stress on the advantages and problems of the different computational strategies and their applicability in different cases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpa.2012.10.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!