AI Article Synopsis

  • The study investigates the dosimetric effects of Onyx 34 and Onyx 18 embolization materials used in treating arteriovenous malformations, focusing on how they interact with stereotactic radiosurgery.
  • Measurements showed that these materials have high transmission rates (98% for 16 MV and 97% for 6 MV beams) and cause slight enhancements in radiation dose downstream (2% and 1% for 16 and 6 MV beams, respectively).
  • CT scans indicated that the relative electron density of both Onyx materials is significantly higher than that of water, suggesting minimal disruption to radiosurgery plans when these materials are used.

Article Abstract

Purpose: Arteriovenous malformations are often treated with a combination of embolization and stereotactic radiosurgery. Concern has been expressed in the past regarding the dosimetric properties of materials used in embolization and the effects that the introduction of these materials into the brain may have on the quality of the radiosurgery plan. To quantify these effects, the authors have taken large volumes of Onyx 34 and Onyx 18 (ethylene-vinyl alcohol copolymer doped with tantalum) and measured the attenuation and interface effects of these embolization materials.

Methods: The manufacturer provided large cured volumes (∼28 cc) of both Onyx materials. These samples were 8.5 cm in diameter with a nominal thickness of 5 mm. The samples were placed on a block tray above a stack of solid water with an Attix chamber at a depth of 5 cm within the stack. The Attix chamber was used to measure the attenuation. These measurements were made for both 6 and 16 MV beams. Placing the sample directly on the solid water stack and varying the thickness of solid water between the sample and the Attix chamber measured the interface effects. The computed tomography (CT) numbers for bulk material were measured in a phantom using a wide bore CT scanner.

Results: The transmission through the Onyx materials relative to solid water was approximately 98% and 97% for 16 and 6 MV beams, respectively. The interface effect shows an enhancement of approximately 2% and 1% downstream for 16 and 6 MV beams. CT numbers of approximately 2600-3000 were measured for both materials, which corresponded to an apparent relative electron density (RED) ρ(e) (w) to water of approximately 2.7-2.9 if calculated from the commissioning data of the CT scanner.

Conclusions: We performed direct measurements of attenuation and interface effects of Onyx 34 and Onyx 18 embolization materials with large samples. The introduction of embolization materials affects the dose distribution of a MV therapeutic beam, but should be of negligible consequence for effective thicknesses of less than 8 mm. The measured interface effects are also small, particularly at 6 MV. Large areas of high-density artifacts and low-density artifacts can cause errors in dose calculations and need to be identified and resolved during planning.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.4757918DOI Listing

Publication Analysis

Top Keywords

interface effects
16
solid water
16
attix chamber
12
onyx embolization
8
stereotactic radiosurgery
8
onyx onyx
8
attenuation interface
8
onyx materials
8
measured interface
8
embolization materials
8

Similar Publications

Enhanced Anti-Interference Photoelectrochemical DNA Bioassay: Grafting a Peptide-Conjugated Hairpin DNA Probe on a COF-Based Photocathode.

ACS Sens

January 2025

Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.

Precise and sensitive analysis of specific DNA in actual human bodily fluids is crucial for the early diagnosis of major diseases and for a deeper understanding of DNA functions. Herein, by grafting a peptide-conjugated hairpin DNA probe to a covalent organic framework (COF)-based photocathode, a robust anti-interference photoelectrochemical (PEC) DNA bioassay was explored, which could specifically resist potential interference from nonspecific proteins and reducing species. Human immunodeficiency virus (HIV) DNA was used as the target DNA (tDNA) for the PEC DNA bioassay.

View Article and Find Full Text PDF

Structural firefighters are exposed to an array of polycyclic aromatic hydrocarbons (PAHs) as a result of incomplete combustion of both synthetic and natural materials. PAHs are found in both the particulate and vapor phases in the firefighting environment and are significantly associated with acute and chronic diseases, including cancer. Using a fireground exposure simulator (FES) and standing mannequins dressed in four different firefighter personal protective equipment (PPE) conditions, each with varying levels of protective hood interface and particulate-blocking features, the efficacy of the hoods was assessed against the ingress of PAHs (specifically, naphthalene).

View Article and Find Full Text PDF

Engineering the Ratios of Nanoparticles Dispersed in Triphasic Nanocomposites for Biomedical Applications.

ACS Appl Mater Interfaces

January 2025

Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States.

Polymer/ceramic nanocomposites integrated the advantages of both polymers and ceramics for a wide range of biomedical applications, such as bone tissue repair. Here, we reported triphasic poly(lactic--glycolic acid) (PLGA, LA/GA = 90:10) nanocomposites with improved dispersion of hydroxyapatite (HA) and magnesium oxide (MgO) nanoparticles using a process that integrated the benefits of ultrasonic energy and dual asymmetric centrifugal mixing. We characterized the microstructure and composition of the nanocomposites and evaluated the effects of the HA/MgO ratios on degradation behavior and cell-material interactions.

View Article and Find Full Text PDF

Purpose Of The Review: Mounting evidence indicates that individuals with chronic obstructive pulmonary disease (COPD) face a heightened risk of severe outcomes upon contracting coronavirus disease 2019 (COVID-19). Current medications for COVID-19 often carry side effects, necessitating alternative therapies with improved tolerance. This review explores the biological mechanisms rendering COPD patients more susceptible to severe COVID-19 and investigates the potential of omega-3 polyunsaturated fatty acids (n-3 PUFAs) in mitigating the severity of COVID-19 in COPD patients.

View Article and Find Full Text PDF

Selenium Interface Layers Boost High Mobility and Switch Ratios in van der Waals Electronics.

Nano Lett

January 2025

Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai 200433, China.

Achieving high mobility while minimizing off-current and static power consumption is critical for applications of two-dimensional field-effect transistors. Herein, a selenium (Se) sacrificial layer is introduced between the rhenium sulfide (ReS) semiconductor and source/drain electrode. With the Se layer and postannealing process, the ReS transistor significantly decreases the off-state current with a substantial increase in the on-state current density.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!