Two counter-rotating circularly polarized beams are used in a laser-based polarimetry diagnostic providing a phase measurement of the Faraday effect. Collinearity of these beams is a key issue that affects measurement accuracy. Spatial offset from even small misalignment induces systematic error due to density gradient and path length difference. Here, we report an alignment technique using a rotating dielectric wedge, which is capable of reducing spatial offset of two probe beams below 0.1 mm for beams with 40 mm diameter. With optimized alignment, 0.05° Faraday effect fluctuations associated with global tearing modes are resolved with an uncertainty below 0.01°.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4733541 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!