Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Paramagnetic Faraday rotator glass (rare-earth doped borosilicate) with a high Verdet constant will be used to measure the magnetic field inside of low density Helium plasmas (T(e) ~ 5 eV, T(i) ~ 1 eV) with a density of n ~ 10(12) cm(-3). Linearly polarized light is sent through the glass such that the plane of polarization is rotated by an angle that depends on the strength of the magnetic field in the direction of propagation and the length of the crystal (6 mm). The light is then passed into an analyzer and photo-detector setup to determine the change in polarization angle. This setup can detect magnetic fields up to 5 kG with a resolution of <5 G and a temporal resolution on the order of a nanosecond. The diagnostic will be used to characterize the structure and evolution of laser-driven collisionless shocks in large magnetized plasmas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4728214 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!