The beam emission spectroscopy system on the National Spherical Torus Experiment measures localized density fluctuations on the ion gyroscale. Optical sightlines provide core to edge radial coverage, and the sightlines are aligned to typical pitch angles to maximize cross-field spatial resolution. Sightline images are 2-3 cm, and point spread function calculations indicate image distortion from pitch angle misalignment and atomic state finite lifetimes is minor with a 15% increase in the image size. New generation photodetectors achieve photon noise limited measurements at frequencies up to 400 kHz with refrigerant cooling at -20 °C. Measurements near the pedestal show broadband turbulence up to 100 kHz, and poloidal correlation lengths are about 10 cm. Plasma turbulence signals can be 2-3 orders of magnitude above photon noise and amplifier thermal noise.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4728094DOI Listing

Publication Analysis

Top Keywords

beam emission
8
emission spectroscopy
8
spectroscopy system
8
system national
8
national spherical
8
spherical torus
8
torus experiment
8
photon noise
8
diagnostic performance
4
performance beam
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!