Hofmeister challenges: ion binding and charge of the BSA protein as explicit examples.

Langmuir

Department of Chemical and Geological Sciences, University of Cagliari-CSGI and CNBS, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato (CA), Italy.

Published: November 2012

AI Article Synopsis

  • Experiments on bovine serum albumin (BSA) using potentiometric titration and electrophoretic light scattering reveal how specific ions bind to the protein's surface, particularly at a physiological concentration of 0.1 M.
  • Anion binding occurs at acidic pH, where the protein is positively charged, and also at the isoionic point, following a Hofmeister series ranking different anions in order of binding strength.
  • The study highlights the complexity of measuring these effects and suggests that different sodium salts can influence the surface charge of BSA, aligned with the Hofmeister series.

Article Abstract

Experiments on bovine serum albumin (BSA) via potentiometric titration (PT) and electrophoretic light scattering (ELS) are used to study specific-ion binding. The effect is appreciable at a physiological concentration of 0.1 M. We found that anions bind to the protein surface at an acidic pH, where the protein carries a positive charge (Z(p) > 0), according to a Hofmeister series (Cl(-) < Br(-) < NO(3)(-) < I(-) < SCN(-)), as well as at the isoionic point (Z(p) = 0). The results obtained require critical interpretation. The measurements performed depend on electrostatic theories that ignore the very specific effects they are supposed to reveal. Notwithstanding this difficulty, we can still infer that different 1:1 sodium salts affect the BSA surface charge/pH curve because anions bind to the BSA surface with an efficiency which follows a Hofmeister series.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la3035984DOI Listing

Publication Analysis

Top Keywords

anions bind
8
hofmeister series
8
bsa surface
8
hofmeister challenges
4
challenges ion
4
ion binding
4
binding charge
4
bsa
4
charge bsa
4
bsa protein
4

Similar Publications

The Role of Light Irradiation and Dendrimer Generation in Directing Electrostatic Self-Assembly.

Polymers (Basel)

January 2025

Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.

pH-responsive polyamidoamine (PAMAM) dendrimers are used as well-defined building blocks to design light-switchable nano-assemblies in solution. The complex interplay between the photoresponsive di-anionic azo dye Acid Yellow 38 (AY38) and the cationic PAMAM dendrimers of different generations is presented in this study. Electrostatic self-assembly involving secondary dipole-dipole interactions provides well-defined assemblies within a broad size range (10 nm-1 μm) with various shapes.

View Article and Find Full Text PDF

We develop a technology based on competitive adsorption between drug molecules and water, specifically designed to address the critical issue of poor drug solubility. By specially engineering silica nanosurfaces with ultrahigh densities of silanol, we significantly enhance their affinity for both drug molecules and water, with a notably greater increase in water affinity. Such surfaces can effectively adsorb a variety of drug molecules under dry conditions.

View Article and Find Full Text PDF

A novel isopthalamide based receptor HL2 featuring two p-benzoic acid units has been synthesised and its anion binding properties analysed by H-NMR spectroscopy in DMSO-d/0.5 % HO. As expected, in the presence of tetrabutylammonium (TBA) fluoride the deprotonation of the carboxylic acid moieties was observed.

View Article and Find Full Text PDF

Background: The membrane transporters viz. multidrug and toxic compound extrusion (MATE) and aluminum-activated malate transporter (ALMT) are associated with aluminum (Al) tolerance by accelerating secretion of organic acids, which can influence nutrient availability and stress response. However, such transporter families have not yet been reported in lentil under Al stress condition.

View Article and Find Full Text PDF

Influence of goethite on the fate of antibiotic (tetracycline) in the aqueous environment: Effect of cationic and anionic surfactants.

Sci Total Environ

January 2025

Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India. Electronic address:

Over the last decades, the release and occurrence of organic pollutants in aquatic systems have become a major global concern due to their bioaccumulation, toxicity, and adverse effects on the ecosystem. Tetracycline (TC), a widely used antibiotic, is often found at high concentrations in the aqueous environment and tends to bind with the natural colloids. Post-COVID-19 pandemic, the release of surfactants in the environment has increased due to the excessive use of washing and cleaning products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!