Glycolate oxidase (GO) catalyses the oxidation of glycolate to glyoxylate, thereby consuming O(2) and producing H(2)O(2). In this work, Arabidopsis thaliana plants expressing GO in the chloroplasts (GO plants) were used to assess the expressional behavior of reactive oxygen species (ROS)-responsive genes and transcription factors (TFs) after metabolic induction of H(2)O(2) formation in chloroplasts. In this organelle, GO uses the glycolate derived from the oxygenase activity of RubisCO. Here, to identify genes responding to an abrupt production of H(2)O(2) in chloroplasts we used quantitative real-time PCR (qRT-PCR) to test the expression of 187 ROS-responsive genes and 1880 TFs after transferring GO and wild-type (WT) plants grown at high CO(2) levels to ambient CO(2) concentration. Our data revealed coordinated expression changes of genes of specific functional networks 0.5 h after metabolic induction of H(2)O(2) production in GO plants, including the induction of indole glucosinolate and camalexin biosynthesis genes. Comparative analysis using available microarray data suggests that signals for the induction of these genes through H(2)O(2) may originate in the chloroplast. The TF profiling indicated an up-regulation in GO plants of a group of genes involved in the regulation of proanthocyanidin and anthocyanin biosynthesis. Moreover, the upregulation of expression of TF and TF-interacting proteins affecting development (e.g., cell division, stem branching, flowering time, flower development) would impact growth and reproductive capacity, resulting in altered development under conditions that promote the formation of H(2)O(2).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3485569 | PMC |
http://dx.doi.org/10.3389/fpls.2012.00234 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!