Low-frequency sounds are advantageous for long-range acoustic signal transmission, but for small animals they constitute a challenge for signal detection and localization. The efficient detection of sound in insects is enhanced by mechanical resonance either in the tracheal or tympanal system before subsequent neuronal amplification. Making small structures resonant at low sound frequencies poses challenges for insects and has not been adequately studied. Similarly, detecting the direction of long-wavelength sound using interaural signal amplitude and/or phase differences is difficult for small animals. Pseudophylline bushcrickets predominantly call at high, often ultrasonic frequencies, but a few paleotropical species use lower frequencies. We investigated the mechanical frequency tuning of the tympana of one such species, Onomarchus uninotatus, a large bushcricket that produces a narrow bandwidth call at an unusually low carrier frequency of 3.2 kHz. Onomarchus uninotatus, like most bushcrickets, has two large tympanal membranes on each fore-tibia. We found that both these membranes vibrate like hinged flaps anchored at the dorsal wall and do not show higher modes of vibration in the frequency range investigated (1.5-20 kHz). The anterior tympanal membrane acts as a low-pass filter, attenuating sounds at frequencies above 3.5 kHz, in contrast to the high-pass filter characteristic of other bushcricket tympana. Responses to higher frequencies are partitioned to the posterior tympanal membrane, which shows maximal sensitivity at several broad frequency ranges, peaking at 3.1, 7.4 and 14.4 kHz. This partitioning between the two tympanal membranes constitutes an unusual feature of peripheral auditory processing in insects. The complex tracheal shape of O. uninotatus also deviates from the known tube or horn shapes associated with simple band-pass or high-pass amplification of tracheal input to the tympana. Interestingly, while the anterior tympanal membrane shows directional sensitivity at conspecific call frequencies, the posterior tympanal membrane is not directional at conspecific frequencies and instead shows directionality at higher frequencies.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.078352DOI Listing

Publication Analysis

Top Keywords

tympanal membrane
16
tympanal
8
unusually low
8
small animals
8
frequencies
8
onomarchus uninotatus
8
tympanal membranes
8
anterior tympanal
8
higher frequencies
8
posterior tympanal
8

Similar Publications

An animal's body mass is said to be indirectly related to its rate of heat loss; that is, smaller animals with higher surface area to volume tend to lose heat faster than larger animals. Thus, thermoregulation should be related to body size, however, generalizable patterns are still unclear. Domestic dogs are a diverse species of endothermic mammals, including a 44-fold difference in body size.

View Article and Find Full Text PDF

Revisiting Age-Related Normative Hearing Levels in Korea.

J Korean Med Sci

January 2025

Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Hanyang University, Seoul, Korea.

Background: Hearing level reference values based on the results of recent audiometry have not been established for the general population of South Korea. This study aimed to evaluate the mean hearing levels of each age group and to measure the annual progression of hearing loss.

Methods: We used the database of the eighth and ninth Korea National Health and Nutrition Examination Survey from 2020 to 2022, and included participants with normal tympanic membranes and without occupational noise exposure.

View Article and Find Full Text PDF

Background: Myringoplasty is one of the treatments used for perforated tympanic membrane.

Aim/objective: We aimed to evaluate the long-term anatomical and functional outcomes of patients who underwent endoscopic inlay butterfly cartilage myringoplasty.

Material And Methods: We retrospectively analyzed 74 patients who had undergone endoscopic butterfly cartilage myringoplasty were followed for at least five years.

View Article and Find Full Text PDF

Background: Recent advances in artificial intelligence have facilitated the automatic diagnosis of middle ear diseases using endoscopic tympanic membrane imaging.

Aim: We aimed to develop an automated diagnostic system for middle ear diseases by applying deep learning techniques to tympanic membrane images obtained during routine clinical practice.

Material And Methods: To augment the training dataset, we explored the use of generative adversarial networks (GANs) to produce high-quality synthetic tympanic images that were subsequently added to the training data.

View Article and Find Full Text PDF

Background: Although Cochlear implantation (CI) is effective in restoring hearing for children with severe-to-profound sensorineural hearing loss, it may influence the middle ear mechanics, potentially causing an air-bone gap and altering middle ear stiffness, which is not detected by traditional 226 Hz tympanometry.

Aims/objectives: To investigate the effect of mastoidectomy posterior tympanotomy (MPTA) on wideband absorbance (WBA) in children with CI.

Materials And Methods: The study included 20 normal-hearing children (normal group) and 10 children with CIs who underwent MPTA (CI-MPTA group), aged 3-10 years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!