Thermal effects on motor control and in vitro muscle dynamics of the ballistic tongue apparatus in chameleons.

J Exp Biol

Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, SCA 110, Tampa, FL 33620, USA.

Published: December 2012

Temperature strongly affects whole-organism performance through its effect on muscle contractile rate properties, but movements powered by elastic recoil are liberated from much of the performance decline experienced by muscle-powered movements at low temperature. We examined the motor control and muscle contractile physiology underlying an elastically powered movement - tongue projection in chameleons - and the associated muscle powered retraction to test the premise that the thermal dependence of muscle contractile dynamics is conserved. We further tested the associated hypothesis that motor control patterns and muscle contractile dynamics must change as body temperature varies, despite the thermal robustness of tongue-projection performance. We found that, over 14-26°C, the latency between the onset of the tongue projector muscle activity and tongue projection was significantly affected by temperature (Q(10) of 2.56), as were dynamic contractile properties of the tongue projector and retractor muscles (Q(10) of 1.48-5.72), supporting our hypothesis that contractile rates slow with decreasing temperature and, as a result, activity durations of the projector muscle increase at low temperatures. Over 24-36°C, thermal effects on motor control and muscle contractile properties declined, indicating that temperature effects are more extreme across lower temperature ranges. Over the entire 14-36°C range, intensity of muscle activity for the tongue muscles was not affected by temperature, indicating that recruitment of motor units in neither muscle increases with decreasing temperature to compensate for declining contractile rates. These results reveal that specializations in morphology and motor control, not muscle contractile physiology, are responsible for the thermal robustness of tongue projection in chameleons.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.078881DOI Listing

Publication Analysis

Top Keywords

muscle contractile
24
motor control
20
muscle
12
control muscle
12
tongue projection
12
temperature
9
contractile
9
thermal effects
8
effects motor
8
contractile physiology
8

Similar Publications

Introduction/aims: Duchenne muscular dystrophy (DMD) is caused by pathogenic variants in the DMD gene, making muscle fibers susceptible to contraction-induced membrane damage. Given the potential beneficial action of cannabidiol (CBD), we evaluated the in vitro effect of full-spectrum CBD oil on the viability of dystrophic muscle fibers and the in vivo effect on myopathy of the mdx mouse, a DMD model.

Methods: In vitro, dystrophic cells from the mdx mouse were treated with full-spectrum CBD oil and assessed with cell viability and cytotoxic analyses.

View Article and Find Full Text PDF

Introduction: The effect of mechanoreflex on central blood pressure (BP) is unclear, although the influence of metaboreflex has been investigated. A relatively small contribution of the mechanoreflex to the pressor response to exercise has been considered in humans because many studies have failed to isolate the mechanoreflex-mediated pressor response. In a recent study, we successfully isolated a mechanoreflex-mediated pressor response using static passive stretching (SPS) in the forearm.

View Article and Find Full Text PDF

Does muscle fatigue change motor synergies at different levels of neuromotor control?

Front Hum Neurosci

January 2025

Institute of Sport Sciences, Department of Human Motor Behavior, Academy of Physical Education, Katowice, Poland.

We investigated the effects of static and dynamic fatigue on motor synergies, focusing on their hierarchical control. Specifically, we examined whether changes in fatigue influence the central nervous system's ability to preserve movement stability. In addition to exploring the direct impact of fatigue on motor synergies, we also analyzed its effects at two distinct levels of hierarchical control, aiming to elucidate the mechanisms by which fatigue alters motor coordination and stability.

View Article and Find Full Text PDF

Background: Anterior cruciate ligament reconstruction (ACLR) often involves harvesting a bone-patellar tendon-bone (BPTB) autograft. How graft harvest affects tendon strain across the 3 distinct regions (medial, lateral, and central) is not known.

Purpose: To (1) quantify strain in the 3 regions of the patellar tendon during 60% of maximum voluntary isometric contraction (MVIC) in 90° of knee flexion and (2) assess how effort level in 2 different knee joint angles (60° and 90°) impacts strain in the medial and lateral regions of the patellar tendon, in 2 cohorts of patients after ACLR using a BPTB autograft (one group <24 months after surgery and another group ≥24 months after surgery).

View Article and Find Full Text PDF

Previously, boost and sag effects seen in unfused tetanic contractions have been studied exclusively at constant stimulation frequency. However, intervals between successive discharges of motoneurons vary during voluntary movements. We therefore aimed to test whether the extra-efficient force production at the onset of contraction (boost) occurs during stimulation with variable intervals, and to what extent it depends on the level of interpulse interval (IPI) variability and history of stimulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!