Objective: To investigate the protective effects and mechanisms of action of dexamethasone and Salvia miltiorrhiza on multiple organs in rats with severe acute pancreatitis (SAP).
Methods: The rats were divided into sham-operated, model control, dexamethasone treated, and Salvia miltiorrhiza treated groups. At 3, 6, and 12 h after operation, the mortality rate of different groups, pathological changes, Bcl-2-associated X protein (Bax) and nuclear factor-κB (NF-κB) protein expression levels in multiple organs (the pancreas, liver, kidneys, and lungs), toll-like receptor 4 (TLR-4) protein levels (only in the liver), intercellular adhesion molecule 1 (ICAM-1) protein levels (only in the lung), and terminal deoxynucleotidy transferase mediated deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) staining expression levels, as well as the serum contents of amylase, glutamate-pyruvate transaminase (GPT), glutamic-oxaloacetic transaminase (GOT), blood urea nitrogen (BUN), and creatinine (CREA) were observed.
Results: The mortality rate of the dexamethasone treated group was significantly lower than that of the model control group (P<0.05). The pathological changes in multiple organs in the two treated groups were relieved to different degrees (P<0.05 and P<0.01, respectively), the expression levels of Bax and NF-κB proteins, and apoptotic indexes of multiple organs were reduced (P<0.05 and P<0.01, respectively). The contents of amylase, GPT, GOT, BUN, and CREA in the two treated groups were significantly lower than those in model control groups (P<0.05 and P<0.01, respectively). The expression level of ICAM-1 protein in the lungs (at 3 and 12 h) in the dexamethasone treated group was significantly lower than that in the Salvia miltiorrhiza treated group (P<0.05). The serum contents of CREA (at 12 h) and BUN (at 6 h) of the Salvia miltiorrhiza treated group were significantly lower than those in the dexamethasone treated group (P<0.05).
Conclusions: Both dexamethasone and Salvia miltiorrhiza can reduce the inflammatory reaction, regulate apoptosis, and thus protect multiple organs of rats with SAP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494031 | PMC |
http://dx.doi.org/10.1631/jzus.B1100351 | DOI Listing |
Plant Sci
January 2025
The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China; College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China. Electronic address:
Salvia miltiorrhiza Bunge, a well-known traditional Chinese herbal medicine, has been served as not only medicine for human ailments, but also health care products. As one of major bioactive ingredients, tanshinones are widely used to treat cardiovascular and cerebrovascular diseases, and also possess different pharmacological activities including anti-tumor, anti-inflammatory, anti-fibrotic and others. However, the content of tanshinones is relatively low in S.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 561113, China; Guizhou Provincial Engineering Technology Research Center for Chemical Drug RandD, Guizhou Medical University, Guiyang, 561113, China. Electronic address:
Ethnopharmacological Relevance: Cryptotanshinone serves as the principal bioactive constituent of Salvia miltiorrhiza Bunge, possesses a wide range of pharmacological activities. Salvia miltiorrhiza Bunge, a long-standing therapeutic agent in traditional Chinese medicine (TCM) practice, is renowned for its efficacy in enhancing blood circulation and alleviating blood stasis and infarction, thereby treating cardiovascular and cerebrovascular diseases.
Aim Of The Study: Platelet activation, when excessive or aberrant, poses a significant risk, catalyzing the onset of various thrombotic disorders.
Eur J Pharmacol
January 2025
Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China. Electronic address:
Dihydrotanshinone I (DHT) is an active ingredient derived from Salvia miltiorrhiza. Previous studies have demonstrated that DHT can improve cardiac function in rats with myocardial ischemia-reperfusion injury (IR). However, the mechanism by which DHT improves myocardial injury in rats still requires further research.
View Article and Find Full Text PDFPhytomedicine
December 2024
Shanghai 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, PR China. Electronic address:
Background: Endothelial-to-mesenchymal transition (EndMT) has been identified as a key factor to the initiation and progression of the pathogenesis of atherosclerosis (AS). Salvianic acid A (SAAS) is the primary water-soluble bioactive ingredient found in Salvia miltiorrhiza, is renowned for its therapeutic effects on cardiovascular diseases. However, the efficacy and mechanisms of SAAS in treating EndMT-induced AS remain underexplored.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
Background: Astragalus mongholicus (AM) and Salvia miltiorrhiza (SM) are commonly used in traditional Chinese medicine to treat heart failure (HF). Ferroptosis has been studied as a key factor in the occurrence of HF. It remains unclear whether the combined use of AM and SM can effectively improve HF and the underlying mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!