Geometries, frequencies, reaction barriers, and reaction rates were calculated for the addition of OH radical to fluorobenzene using Möller-Plesset second-order perturbation (MP2) and G3 methods. Four stationary points were found along each reaction path: reactants, prereaction complex, transition state, and product. A potential for association of OH radical and fluorobenzene into prereaction complex was calculated, and the associated transition state was determined for the first time. G3 calculations give higher reaction barriers than MP2, but also a significantly deeper prereaction complex minimum. The rate constants, calculated with Rice-Ramsperger-Kassel-Marcus (RRKM) theory using G3 energies, are much faster and in much better agreement with the experiment than those calculated with MP2 method, as the deeper well favors the formation of prereaction complex and also increases the final relative populations of adducts. The discrepancies between the experimental and calculated rate constants are attributed to the errors in calculated frequencies as well as to the overestimated G3 reaction barriers and underestimated prereaction complex well depth. It was possible to rectify those errors and to reproduce the experimental reaction rates in the temperature range 230-310 K by treating the relative translation of OH radical and fluorobenzene as a two-dimensional particle-in-the-box approximation and by downshifting the prereaction complex well and reaction barriers by 0.7 kcal mol(-1). The isomeric distribution of fluorohydroxycyclohexadienyl radicals is calculated from the reaction rates to be 30.9% ortho, 22.6% meta, 38.4% para, and 8.3% ipso. These results are in agreement with experiment that also shows dominance of ortho and para channels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcc.23175 | DOI Listing |
ACS Earth Space Chem
December 2024
School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
Rate coefficients for the reaction of CH with CHO were measured for the first time over the temperature range of 37-603 K, with the CH radicals produced by pulsed laser photolysis and detected by CH radical chemiluminescence following their reaction with O. The low temperature measurements (≤93 K) relevant to the interstellar medium were made within a Laval nozzle gas expansion, while higher temperature measurements (≥308 K) were made within a temperature controlled reaction cell. The rate coefficients display a negative temperature dependence below 300 K, reaching (1.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.
Using the time-dependent wave-packet approach, we calculate the first fully converged state-to-state differential cross-sections for the H + HOD( = 1-4) → H + OD reactions on a highly accurate neural network PES. It is found that, unlike the loss of memory effect observed in the product distributions for low vibrational excitation reactions, high initial OH vibrational excitation significantly influences not only the product vibrational distribution but also the angular distribution. Furthermore, for the H + HOD( = 3,4) reactions, the total integral cross-sections maintain the pronounced oscillatory structures in the = 0 probabilities at low collision energies, which originate from the prereactive van der Waals resonances.
View Article and Find Full Text PDFEnviron Sci Process Impacts
December 2024
Department of Chemistry, University of California Irvine, CA 92697, USA.
Biotechnol Bioeng
January 2025
The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.
Front Chem
September 2024
Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China.
Previous theoretical studies have revealed that high-spin states possess flatter potential energy surfaces than low-spin states in reactions involving iron(IV)-oxo species of cytochrome P450 enzymes (P450s), nonheme enzymes, or biomimetic complexes. Therefore, actively utilizing high-spin states to enhance challenging chemical transformations, such as C-H bond activation, represents an intriguing research avenue. However, the inherent instability of high-spin states relative to low-spin states in pre-reaction complexes often hinders their accessibility around the transition state, especially in heme systems with strong ligand fields.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!