The Opuha Dam was designed for water storage, hydropower, and to augment summer low flows. Following its commissioning in 1999, algal blooms (dominated first by Phormidium and later Didymosphenia geminata) downstream of the dam were attributed to the reduced frequency and magnitude of high-flow events. In this study, we used a 20-year monitoring dataset to quantify changes associated with the dam. We also studied the effectiveness of flushing flows to remove periphyton from the river bed. Following the completion of the dam, daily maximum flows downstream have exceeded 100 m(3) s(-1) only three times; two of these floods exceeded the pre-dam mean annual flood of 203 m(3) s(-1) (compared to 19 times >100 m(3) s(-1) and 6 times >203 m(3) s(-1) in the 8 years of record before the dam). Other changes downstream included increases in water temperature, bed armoring, frequency of algal blooms, and changes to the aquatic invertebrate community. Seven experimental flushing flows resulted in limited periphyton reductions. Flood wave attenuation, bed armoring, and a shortage of surface sand and gravel, likely limited the effectiveness of these moderate floods. Floods similar to pre-dam levels may be effective for control of periphyton downstream; however, flushing flows of that magnitude are not possible with the existing dam infrastructure. These results highlight the need for dams to be planned and built with the capacity to provide the natural range of flows for adaptive management, particularly high flows.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00267-012-9971-x | DOI Listing |
J Environ Manage
January 2025
Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, 39762, United States. Electronic address:
Harmful algal blooms (HABs) are increasingly a global concern and the issue of all fifty states in the U.S as it poses a threat to human health and aquatic ecosystem. This study aimed to investigate the relationship of HABs with streamflow and water quality parameters and assess the hydrology-based potential future HABs in the Ohio River Basin at Ironton (ORBI) using the Soil and Water Assessment Tool (SWAT).
View Article and Find Full Text PDFTurbidity flows can transport massive amounts of sediment across large distances with dramatic, long-lasting impacts on deep-sea benthic communities. The 2016 M 7.8 Kaikōura Earthquake triggered a canyon-flushing event in Kaikōura Canyon, New Zealand, which included significant submarine mass wasting, debris, and turbidity flows.
View Article and Find Full Text PDFEnviron Monit Assess
October 2024
Iowa Geological Survey, University of Iowa, Iowa City, IA, USA.
Riverine sampling of pollutants is commonly used to understand pollutants' transport pathways, relationships with hydrology, and overall presence in a waterbody. However, temporal gaps between sample collection introduce errors to these efforts, and guidance prescribing sampling frequency remains sparse. The magnitude of error often depends on a contaminant's transport mechanisms and local hydrologic conditions, making the creation of comprehensive sampling guidance difficult.
View Article and Find Full Text PDFJ Plankton Res
July 2024
Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
Neuroscience
November 2024
Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea. Electronic address:
The glymphatic system theory postulates that brain waste is removed through the cerebrospinal fluid (CSF) flow. According to this theory, CSF in the subarachnoid space (SAS) moves to the perivascular space around the penetrating arteries, flows into parenchyma to mix with interstitial fluid and brain waste, and then moves to the perivenous space to be flushed out of the brain. Despite the controversies about the glymphatic theory, it is clear that SAS plays a key role in waste clearance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!