Dichlorido{2-[(3,5-diphenyl-1H-pyrazol-1-yl-κN2)methyl]pyridine-κN}palladium(II).

Acta Crystallogr C

Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.

Published: November 2012

The title compound, [PdCl(2)(C(21)H(17)N(3))], is a member of a sequence of Pd, Pt and Co dichloride complexes bearing polysubstituted (pyrazol-1-ylmethyl)pyridine ligands. It is shown that there is a correlation between the steric bulkiness of the bidentate (pyrazol-1-ylmethyl)pyridine ligands and the Pd-N(pyrazole) distances, i.e. the larger the ligand, the longer the bond. In contrast, no trend is observed between the steric properties of the ligand and the Pd-N(pyridine) bond lengths.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S0108270112043119DOI Listing

Publication Analysis

Top Keywords

pyrazol-1-ylmethylpyridine ligands
8
dichlorido{2-[35-diphenyl-1h-pyrazol-1-yl-κn2methyl]pyridine-κn}palladiumii title
4
title compound
4
compound [pdcl2c21h17n3]
4
[pdcl2c21h17n3] member
4
member sequence
4
sequence dichloride
4
dichloride complexes
4
complexes bearing
4
bearing polysubstituted
4

Similar Publications

"Popping the Ion-Basket": Enhancing Thermoelectric Performance of Conjugated Polymers by Blending with Latently Dissociable Perovskite Quantum Dots.

Adv Sci (Weinh)

January 2025

SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.

A novel additive method to boost the Seebeck coefficient of doped conjugated polymers without a significant loss in electrical conductivity is demonstrated. Perovskite (CsPbBr) quantum dots (QDs) passivated by ligands with long alkyl chains are mixed with a conjugated polymer in a solution phase to form polymer-QD blend films. Solution sequential doping of the blend film with AuCl solution not only doped the conjugated polymer but also decomposed the QDs, resulting in a doped conjugated polymer film embedded with separated ions dissociated from the QDs.

View Article and Find Full Text PDF

Design Rule of Tetradentate Ligand-Based Pt(II) Complex for Efficient Singlet Exciton Harvesting in Fluorescent Organic Light-Emitting Diodes.

J Phys Chem Lett

January 2025

School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.

Controlling intermolecular interactions, such as triplet-triplet annihilation (TTA) and triplet-polaron annihilation (TPA), is crucial for achieving high quantum efficiency in organic light-emitting diodes (OLEDs) by suppressing exciton loss. This study investigates the molecular design of tetradentate Pt(II) complexes used for singlet exciton harvesting in fluorescent OLEDs to elucidate the relationship between the chemical structure of the ligands and exciton quenching mechanisms. It was discovered that the bulkiness of substituents is pivotal for maximizing quantum efficiency in these devices.

View Article and Find Full Text PDF

Herein, we have developed a Pd(II)-catalyzed cyclization of prochiral alkyne-tethered malononitriles to access five-membered carbocycles having a nitrile-containing all-carbon quaternary center. The reaction pathway involves a -acetoxypalladation, nitrile group insertions into the carbon-palladium bond and sequential deacetylation followed by -acetylation. Initial studies on asymmetric cyclization were also performed with chiral Pyox ligands.

View Article and Find Full Text PDF

The chemical reduction of a pyracylene-hexa--hexabenzocoronene-(HBC)-fused nanographene TPP was investigated with K and Rb metals to reveal its multi-electron acceptor abilities. The reaction of TPP with the above alkali metals, monitored by UV-vis-NIR and H NMR spectroscopy, evidenced the stepwise reduction process. The use of different solvents and secondary ligands enabled isolation of single crystals of three different reduced states of TPP with 1, 2, and 3 electrons added to its π-system.

View Article and Find Full Text PDF

Predicting the location of coordinated metal ion-ligand binding sites using geometry-aware graph neural networks.

Comput Struct Biotechnol J

December 2024

Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.

More than 50 % of proteins bind to metal ions. Interactions between metal ions and proteins, especially coordinated interactions, are essential for biological functions, such as maintaining protein structure and signal transport. Physiological metal-ion binding prediction is pivotal for both elucidating the biological functions of proteins and for the design of new drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!