AI Article Synopsis

Article Abstract

We previously demonstrated that intrathecal (i.t.) administration of acromelic acid A (Acro-A) induced allodynia in mice and that simultaneous administration of (2S,3R,4R)-3-carboxymethyl-4-(phenylthio)pyrrolidine-2-carboxylic acid (PSPA-1), an Acro-A analogue, attenuated the Acro-A-induced allodynia. To clarify a mechanism of PSPA-1, we attached methyl radical to PSPA-1 and synthesized (2S,3R,4R)-3-carboxymethyl-4-(4-methylphenylthio) pyrrolidine-2-carboxylic acid (PSPA-4) and [(11)C]PSPA-4 for behavioral and autoradiography studies. Although PSPA-4 inhibited the Acro-A-induced allodynia in a dose-dependent manner from 1 to 10 fg/mouse, PSPA-4 itself induced allodynia at 10 to 100 pg/mouse. In vitro autoradiography, [(11)C]PSPA-4 was specifically bound to the rat brain and spinal cord, and the binding was significantly displaced by PSPA-1 and kainic acid, but not by AMPA and antagonists of NMDA, AMPA and kainate receptors. Conversely, [(3)H]kainate was specifically bound to the rat brain and the dorsal horn of spinal cord, and the binding was significantly displaced by PSPA-1 and PSPA-4. The PSPA-4-induced allodynia was blocked by the AMPA/kainate antagonist GYKI53655, but not by kainate antagonists NS102 and UBP296. PSPA-4 increased intracellular Ca(2+) concentration in 27.9% of cultured dorsal root ganglion neurons responding to glutamate, much higher than kainate in 10.9% of them. Taken together, these results suggest that PSPA-4 attenuated the Acro-A-induced allodynia at low doses and induced allodynia at high doses via a binding site different from known kainate antagonists. The development of a radio-labeled PSPA-4 will enable us to promote the understanding of the action mechanism not only of Acro-A, but also of pain transmission in the periphery and central nervous system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2012.10.023DOI Listing

Publication Analysis

Top Keywords

induced allodynia
12
acro-a-induced allodynia
12
pspa-4
8
acid pspa-4
8
acromelic acid
8
allodynia
8
attenuated acro-a-induced
8
bound rat
8
rat brain
8
spinal cord
8

Similar Publications

Background: Lowering barometric pressure (LP) can exacerbate neuropathic pain. However, animal studies in this field are limited to a few conditions. Furthermore, although sympathetic involvement has been reported as a possible mechanism, whether the sympathetic nervous system is involved in the hypothalamic-pituitary-adrenal (HPA) axis remains unknown.

View Article and Find Full Text PDF

Bacterial Nanovesicles as Interkingdom Signaling Moieties Mediating Pain Hypersensitivity.

ACS Nano

January 2025

Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States.

Gut dysbiosis contributes to multiple pathologies, yet the mechanisms of the gut microbiota-mediated influence on systemic and distant responses remain largely elusive. This study aimed to identify the role of nanosized bacterial extracellular vesicles (bEVs) in mediating allodynia, i.e.

View Article and Find Full Text PDF

Intranasal Administration of the Combination of Dextro-Ketamine and Dexmedetomidine for Treatment of Diabetic Neuropathic Pain in Rats.

J Pain Res

January 2025

Programa de Pós-Graduação em Medicina (Cirurgia Geral), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Introduction: Diabetes mellitus (DM) has become a public health problem, which is associated with high morbidity and mortality, due to the chronic complications, such as diabetic neuropathy. Current recommendations for the treatment of neuropathic pain achieve a reduction of 30% in only 30% of cases. Therefore, it is necessary to identify new therapeutic approaches to improve the quality of life of diabetic patients.

View Article and Find Full Text PDF

Background: Women with endometriosis are more likely to have migraine. The mechanisms underlying this co-morbidity are unknown. Prolactin, a neurohormone secreted and released into circulation from the anterior pituitary, can sensitize sensory neurons from female, but not male, rodents, monkeys and human donors.

View Article and Find Full Text PDF

Empathy plays a crucial role in social communication and the perception of affective states and behavioral processes. In this study, we observed that empathic interaction with a mouse experiencing pain resulted in decreased mechanical pain thresholds and anxiety-like behaviors in its bystander, though the underlying mechanisms remain unknown. We demonstrated that CD38 expression in the paraventricular nucleus (PVN) was upregulated during empathic pain, and the pain and emotions of CD38 knockout (CD38KO) mice as bystanders were not affected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!