We investigate the magnetic-field- and temperature-dependent transport properties of CVD-grown graphene transferred to a flexible substrate (Kapton) and subjected to externally applied strain. In zero magnetic field, a logarithmic temperature-dependent conductivity correction, resulting from strong electron-electron interaction, becomes weaker with the application of strains as large as 0.6% because of an increased rate of chiral-symmetry-breaking scattering. With the application of a perpendicular magnetic field, we also observe positive magnetoconductance at low temperature (T = 5 K) due to weak localization. This magnetoconductance is suppressed with increasing strain, concomitant with a rapid decrease of the intervalley scattering rate (τ(i)(-1)). Our results are in good agreement with theoretical expectations and are consistent with a strain-induced decoupling between graphene and its underlying Kapton substrate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/24/47/475304 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!