Unlabelled: Macrophage carriage, release, and antitumor activities of polymeric nanoformulated paclitaxel (PTX) were developed as a novel delivery system for malignant glioma. To achieve this goal, the authors synthesized PTX-loaded nanoformulations (nano-PTX), then investigated their uptake, release, and toxicological properties. Chemosensitivity was significant in U87 cells (P < 0.05) at concentrations from 10(-4) to 10(-8) M following 72 hours' exposure to bone-marrow-derived macrophages (BMM)-nano-PTX in comparison with treatment with nano-PTX alone. The most significant reductions in U87 cell viability (P < 0.05) were observed in the transwell cocultures containing BMM-nano-PTX. Limited toxicity to BMM was observed at the same concentrations. BMM functions were tested by analysis of microtubules and actin filaments, as the cytoarchitecture, demonstrating a similar cytoskeleton pattern before and after nano-PTX was loaded into cells. This data indicate that nanoformulations of PTX facilitate cell uptake, delay toxicity, and show improved therapeutic efficacy by BMM-nano-PTX delivery.
From The Clinical Editor: In this study the delivery, release, and antitumor activity of polymeric nanoformulated paclitaxel carried by macrophages are described as a novel and efficient system for treatment of resistant malignant glioma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nano.2012.10.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!