Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: NO* is a key molecule involved in the regulation of cell survival, proliferation and differentiation in many cell types. In this study we investigated the contribution of NO* during the differentiation of human peripheral blood hemopoietic stem cells (CD34+HSCs) toward immunogenic dendritic cells (i-DCs).
Methods: We depleted autocrine NO* production, using NG-monomethyl-L-arginine monoacetate (L-NMMA) and paracrine NO', using oxy-hemoglobin (HbO2) as a NO* scavenger during in vitro differentiation of CD34+HSCs to i-DCs. We monitored the NO* level, cell proliferation, phenotype and differentiation potential.
Results: We found that the depletion of paracrine or autocrine NO* correlated with (I) an active proliferation state at the end of differentiation, when control cells were not proliferating; (II) a significant reduction in the expression levels of differentiative markers (CD1a and HLA-DR) with a parallel high expression of the CD34 marker (III) with a retrieved clonogenic ability compared to control cells.
Conclusions: On the whole, our data indicate that the depletion of NO* during the commitment stage blocks CD34+HSC differentiation into i-DCs and maintains an undifferentiated, highly proliferating cell population, indicating/revealing a novel role for NO* in the commitment of CD34+HSCs into i-DCs.
General Significance: The essential finding of the present study is that NO*, produced in HSCs by NOS enzymes, may act as autocrine and paracrine effectors regulating the in vitro differentiation process of CD34+-HSCs toward i-DCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbagen.2012.10.019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!