This Letter generalizes the metabolism of the azo class of compounds by Clostridium perfringens, an anaerobe found in the human colon. A recently reported 5-aminosalicylic acid-based prednisolone prodrug was shown to release the drug when incubated with the bacteria, while the para-aminobenzoic acid (PABA) based analogue did not. Instead, it showed a new HPLC peak with a relatively close retention time to the parent which was identified by LCMS as the partially reduced hydrazine product. This Letter investigates azoreduction across a panel of substrates with varying degrees of electronic and steric similarity to the PABA-based compound. Azo compounds with an electron donating group on the azo-containing aromatic ring showed immediate disproportionation to their parent amines without any detection of hydrazine intermediates by HPLC. Compounds containing only electron withdrawing groups are partially and reversibly reduced to produce a stable detectable hydrazine. They do not disproportionate to their parent amines, but regenerate the parent azo compound. This incomplete reduction is relevant to the design of azo-based prodrugs and the toxicology of azo-based dyes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2012.10.014DOI Listing

Publication Analysis

Top Keywords

azo compounds
8
compounds electron
8
parent amines
8
structure requirements
4
requirements anaerobe
4
anaerobe processing
4
azo
4
processing azo
4
compounds
4
compounds implications
4

Similar Publications

Microwave catalytic treatment using magnetically separable CoFeO spinel catalyst for high-rate degradation of malachite green dye.

J Environ Manage

December 2024

Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India. Electronic address:

The release of toxic chemical dyes from the industrial effluent poses huge challenges for the environmental engineers to treat it. Azo dyes encompass the huge part of textile discharges which are difficult to degrade due to their complex chemical aromatic structures and due to the presence of strong bonds (-N=N-). Thus, the removal of a carcinogenic azo dye (i.

View Article and Find Full Text PDF

Azo dye wastewater has garnered significant attention from researchers because of its association with high-temperature, high-salt, and high-alkali conditions. In this study, consortium ZZ efficiently decolorized brown D3G under halophilic and thermophilic conditions. he results indicated that consortium ZZ, which was mainly dominated by Marinobacter, Bacillus, and Halomonas, was achieved decolorization rates ranging from 1 to 10% at temperatures between 40 °C and 50 °C, while maintaining a pH range of 7 to 10 for direct brown D3G degradation.

View Article and Find Full Text PDF

In the present work, a diazonium salt is prepared by a diazonium reaction of sulfamerazine in the presence of aqueous hydrochloric acid and sodium nitrate. Structural confirmation of azo compounds synthesize is achieved by mass spectrometry, infrared spectroscopy, and H, C nuclear magnetic resonance. The sample geometry is derived using Density Functional Theory (DFT) and DT-DFT applied to the basis set B3LYPL6-311 + G(d,p).

View Article and Find Full Text PDF

Breaking the Myth of Enzymatic Azoreduction.

ACS Chem Biol

December 2024

Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States.

Flavin-dependent azoreductases have been applied to a wide range of tasks from decolorizing numerous azo dyes to releasing azo-conjugated prodrugs. A general narrative reiterated in much of the literature suggests that this enzyme promotes sequential reduction of both the azo-containing substrate and its corresponding hydrazo product to release the aryl amine components while consuming two equivalents of NAD(P)H. Indeed, such aryl amines can be formed by incubation of certain azo compounds with azoreductases, but the nature of the substrates capable of this apparent azo bond lysis remained unknown.

View Article and Find Full Text PDF

A fast and highly sensitive electrochemical sensor (ECS) is crucially desirable for observing synthetic dyes in foodstuffs, as excessive consumption of these colorants can pose risks to human health, including toxicity and pathogenicity. This research introduces the creation of an ECS comprising a CuO-ZrO nanocomposite for detecting Sunset Yellow (SY) dye in beverage and food items. The synthesized CuO-ZrO material underwent thorough characterization using various physicochemical and electroanalytical methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!