A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Understanding symptomatology of atherosclerotic plaque by image-based tissue characterization. | LitMetric

Understanding symptomatology of atherosclerotic plaque by image-based tissue characterization.

Comput Methods Programs Biomed

Department of Electrical and Computer Engineering, Ann Polytechnic, Singapore 599489, Singapore.

Published: April 2013

Characterization of carotid atherosclerosis and classification into either symptomatic or asymptomatic is crucial in terms of diagnosis and treatment planning for a range of cardiovascular diseases. This paper presents a computer-aided diagnosis (CAD) system (Atheromatic) that analyzes ultrasound images and classifies them into symptomatic and asymptomatic. The classification result is based on a combination of discrete wavelet transform, higher order spectra (HOS) and textural features. In this study, we compare support vector machine (SVM) classifiers with different kernels. The classifier with a radial basis function (RBF) kernel achieved an average accuracy of 91.7% as well as a sensitivity of 97%, and specificity of 80%. Thus, it is evident that the selected features and the classifier combination can efficiently categorize plaques into symptomatic and asymptomatic classes. Moreover, a novel symptomatic asymptomatic carotid index (SACI), which is an integrated index that is based on the significant features, has been proposed in this work. Each analyzed ultrasound image yields on SACI number. A high SACI value indicates that the image shows symptomatic and low value indicates asymptomatic plaques. We hope this SACI can support vascular surgeons during routine screening for asymptomatic plaques.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2012.09.008DOI Listing

Publication Analysis

Top Keywords

symptomatic asymptomatic
16
asymptomatic plaques
8
asymptomatic
6
symptomatic
5
understanding symptomatology
4
symptomatology atherosclerotic
4
atherosclerotic plaque
4
plaque image-based
4
image-based tissue
4
tissue characterization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!