Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Two thermally induced phase separation (TIPS) methods have been used to fabricate biodegradable poly(L-lactic acid) (PLLA) tissue engineering scaffolds each with fibrous (F-TIPS) and porous (P-TIPS) microstructures. Three levels of PLLA concentration (3, 5 and 7 wt%) were employed in each fabrication method and both wet and dry specimens were studied. Simple compression testing revealed that an elastic-plastic representation of the mechanical behavior was possible for all specimens. Both elastic and plastic moduli were higher for the P-TIPS, for higher polymer concentration, and might be somewhat higher for dry as opposed to wet specimens. For F-TIPS specimens, permanent deformation occurred successively during cyclic deformation but a "memory effect" simplified the behavior. Although F-TIPS microstructure better resembled the natural extracellular matrix, human osteosarcoma fibroblast cells showed more consistent viability in the P-TIPS scaffolds under our unloaded test protocols. Biodegradation in cell culture medium resulted in a decreased elastic moduli for F-TIPS specimens. Information presented regarding the microstructure, mechanical properties and cell viability of these PLLA scaffolds that should help reduce the number of iterations involved in developing tissue engineering products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2012.08.021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!