GNE myopathy, previously termed hereditary inclusion body myopathy (HIBM), is an adult-onset neuromuscular disorder characterized by progressive muscle weakness. The disorder results from biallelic mutations in GNE, encoding UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase, the key enzyme of sialic acid synthesis. GNE myopathy, associated with impaired glycan sialylation, has no approved therapy. Here we test potential sialylation-increasing monosaccharides for their effectiveness in prophylaxis (at the embryonic and neonatal stages) and therapy (after the onset of symptoms) by evaluating renal and muscle hyposialylation in a knock-in mouse model (Gne p.M712T) of GNE myopathy. We demonstrate that oral mannosamine (ManN), but not sialic acid (Neu5Ac), mannose (Man), galactose (Gal), or glucosamine (GlcN), administered to pregnant female mice has a similar prophylactic effect on renal hyposialylation, pathology and neonatal survival of mutant offspring, as previously shown for N-acetylmannosamine (ManNAc) therapy. ManN may be converted to ManNAc by a direct, yet unknown, pathway, or may act through another mode of action. The other sugars (Man, Gal, GlcN) may either not cross the placental barrier (Neu5Ac) and/or may not be able to directly increase sialylation. Because GNE myopathy patients will likely require treatment in adulthood after onset of symptoms, we also administered ManNAc (1 or 2g/kg/day for 12 weeks), Neu5Ac (2 g/kg/day for 12 weeks), or ManN (2 g/kg/day for 6 weeks) in drinking water to 6 month old mutant Gne p.M712T mice. All three therapies markedly improved the muscle and renal hyposialylation, as evidenced by lectin histochemistry for overall sialylation status and immunoblotting of specific sialoproteins. These preclinical data strongly support further evaluation of oral ManNAc, Neu5Ac and ManN as therapy for GNE myopathy and conceivably for certain glomerular diseases with hyposialylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3504164PMC
http://dx.doi.org/10.1016/j.ymgme.2012.10.011DOI Listing

Publication Analysis

Top Keywords

gne myopathy
24
gne
9
renal muscle
8
muscle hyposialylation
8
mouse model
8
model gne
8
sialic acid
8
onset symptoms
8
gne pm712t
8
renal hyposialylation
8

Similar Publications

[Aceneuraminic acid for distal myopathy].

Nihon Yakurigaku Zasshi

January 2025

Department of Neurology, Tohoku University School of Medicine.

Distal myopathy with rimmed vacuoles (GNE myopathy) is an incurable disease that develops after the late teens, progresses slowly, and has no effective treatment. It is inherited in an autosomal recessive manner, and the number of patients in Japan is estimated to be around 400. The causative gene was revealed to be GNE, the rate-limiting enzyme in the sialic acid biosynthesis pathway, and non-clinical studies demonstrated the effectiveness of sialic acid.

View Article and Find Full Text PDF

Introduction: GNE-myopathy is a distal myopathy with adult-onset and initial involvement of anterior leg compartment. A founder effect has been demonstrated for some patients from several large cohorts in different countries.

Methods: In this study, we investigated the allele frequency of the c.

View Article and Find Full Text PDF

Rare genetic disorders are low in prevalence and hence there is little or no attention paid to them in the mainstream medical industry. One of the ultra-rare neuromuscular disorders, GNE myopathy is caused due to biallelic mutations in the bifunctional enzyme, GNE (UDP N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase). It catalyses the rate-limiting step in sialic acid biosynthesis.

View Article and Find Full Text PDF

A pilot trial for efficacy confirmation of 6'-sialyllactose supplementation in GNE myopathy: Randomized, placebo-controlled trial.

Mol Genet Metab

November 2024

Department of Neurology, Pusan National University School of Medicine, Busan, Republic of Korea; Department of Neurology and Biomedical Research institute, Pusan National University Yangsan Hospital, Gyeongsangnam-do, Republic of Korea. Electronic address:

Article Synopsis
  • GNE myopathy is a rare genetic muscle disorder that leads to weakness in the ankles and muscle degeneration, caused by mutations in the GNE gene that reduce sialic acid production.
  • A clinical trial tested a supplement, 6'-sialyllactose (6SL), at doses of 3g and 6g to see if it could improve muscle strength and health, revealing better outcomes in muscle strength and reduced degeneration with the higher dose.
  • The latest study involved 11 participants to compare 6SL with a placebo group over 48 weeks, finding no major differences in muscle strength but a significant degeneration in muscle fat measured by MRI, indicating muscle health issues, particularly in the placebo group.
View Article and Find Full Text PDF
Article Synopsis
  • Genetic neuromuscular disorders significantly impact muscle function and present challenges during pregnancy, necessitating a review of related obstetric outcomes.
  • A systematic analysis of 28 studies revealed common complications such as polyhydramnios, preterm labor, and increased rates of cesarean sections among pregnant women with disorders like myotonic dystrophy and spinal muscular atrophy.
  • Effective management of these high-risk pregnancies requires collaboration between neurologists and obstetricians, alongside further research to establish standardized care protocols.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!