Chromatin remodeling during DNA double-strand break (DSB) repair is required to facilitate access to and repair of DSBs. This remodeling requires increased acetylation of histones and a shift in nucleosome organization to create open, relaxed chromatin domains. However, the underlying mechanism driving changes in nucleosome structure at DSBs is poorly defined. Here, we demonstrate that histone H2A.Z is exchanged onto nucleosomes at DSBs by the p400 remodeling ATPase. H2A.Z exchange at DSBs shifts the chromatin to an open conformation and is required for acetylation and ubiquitination of histones and for loading of the brca1 complex. H2A.Z exchange also restricts single-stranded DNA production by nucleases and is required for loading of the Ku70/Ku80 DSB repair protein. H2A.Z exchange therefore promotes specific patterns of histone modification and reorganization of the chromatin architecture, leading to the assembly of a chromatin template that is an efficient substrate for the DSB repair machinery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3525728 | PMC |
http://dx.doi.org/10.1016/j.molcel.2012.09.026 | DOI Listing |
Nat Cell Biol
January 2025
Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.
Double-strand breaks (DSBs) can initiate mitotic catastrophe, a complex oncosuppressive phenomenon characterized by cell death during or after cell division. Here we unveil how cell cycle-regulated DSB repair guides disparate cell death outcomes through single-cell analysis of extended live imaging. Following DSB induction in S or G2, passage of unresolved homologous recombination intermediates into mitosis promotes non-immunogenic intrinsic apoptosis in the immediate attempt at cell division.
View Article and Find Full Text PDFStructural variations (SVs) play important roles in genetic diversity, evolution, and carcinogenesis and are, as such, important for human health. However, it remains unclear how spatial proximity of double-strand breaks (DSBs) affects the formation of SVs. To investigate if spatial proximity between two DSBs affects DNA repair, we used data from 3C experiments (Hi-C, ChIA-PET, and ChIP-seq) to identify highly interacting loci on six different chromosomes.
View Article and Find Full Text PDFHeliyon
January 2025
Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain.
The human deoxyribonucleoside triphosphatase (dNTPase) Sterile alpha motif and histidine-aspartate domain containing protein 1 (SAMHD1) has a dNTPase-independent role in repairing DNA double-strand breaks (DSBs) by homologous recombination (HR). Here, we show that VENOSA4 (VEN4), the probable ortholog of SAMHD1, also functions in DSB repair by HR. The loss-of-function mutants showed increased DNA ploidy and deregulated DNA repair genes, suggesting DNA damage accumulation.
View Article and Find Full Text PDFCytokine Growth Factor Rev
January 2025
Center for Precision Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Pathology, College of Medicine, China Medical University, Taichung, Taiwan. Electronic address:
Receptor tyrosine kinases (RTKs) are membrane sensors that monitor alterations in the extracellular milieu and translate this information into appropriate cellular responses. Epidermal growth factor receptor (EGFR) is the most well-known model in which gene expression is upregulated by mitogenic signals through the activation of multiple signaling cascades or by nuclear translocation of the full-length EGFR protein. RON (Receptuer d'Origine Nantatise, also known as macrophage stimulating 1 receptor, MST1R) has recently gained attention as a therapeutic target for human cancer.
View Article and Find Full Text PDFGenetics
January 2025
Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Bloom Syndrome helicase (Blm) is a RecQ family helicase involved in DNA repair, cell-cycle progression, and development. Pathogenic variants in human BLM cause the autosomal recessive disorder Bloom Syndrome, characterized by predisposition to numerous types of cancer. Prior studies of Drosophila Blm mutants lacking helicase activity or protein have shown sensitivity to DNA damaging agents, defects in repairing DNA double-strand breaks (DSBs), female sterility, and improper segregation of chromosomes in meiosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!