Characterization and identification of alanine to serine sequence variants in an IgG4 monoclonal antibody produced in mammalian cell lines.

J Chromatogr B Analyt Technol Biomed Life Sci

Biologics Manufacturing and Process Development, Global Manufacturing and Supply, Bristol-Myers Squibb, Princeton, NJ 08543, United States.

Published: November 2012

Low levels of alanine to serine sequence variants were identified in an IgG4 monoclonal antibody by ultra/high performance liquid chromatography and tandem mass spectrometry. The levels of the identified sequence variants A183S and A152S, both in the light chain, have been determined to be 7.8-9.9% and 0.5-0.6%, by extracted ion currents of the tryptic peptides L16 and L14, respectively. The A183S variant was confirmed through tryptic map spiking experiments using synthetic peptide, SDYEK, which incorporated Ser at the position of native Ala in the tryptic peptide L16. Both mutations were also observed by endoproteinase Asp-N peptide mapping. The variant level of A183S was also quantified by LC-UV with detection at 280nm and fluorescence detection of tyrosine residues on the tryptic peptides. The results from LC-MS, UV, and fluorescence detection are in close agreement with each other. The levels of the sequence variants are comparable among the antibody samples manufactured at different scales as well as locations, indicating that the variants' levels are not affected by manufacture scale or locations. DNA sequencing of the master cell bank revealed the presence of mixed bases at position 183 encoding both wild and mutated populations, whereas bases encoding the minor sequence variant at position 152 were not detected. The root cause for A152S mutation is not yet clearly understood at this moment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2012.09.023DOI Listing

Publication Analysis

Top Keywords

sequence variants
16
alanine serine
8
serine sequence
8
igg4 monoclonal
8
monoclonal antibody
8
tryptic peptides
8
fluorescence detection
8
sequence
5
characterization identification
4
identification alanine
4

Similar Publications

Multi-Omics Research on Angina Pectoris: A Novel Perspective.

Aging Dis

December 2024

Department of Psycho-cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.

Angina pectoris (AP), a clinical syndrome characterized by paroxysmal chest pain, is caused by insufficient blood supply to the coronary arteries and sudden temporary myocardial ischemia and hypoxia. Long-term AP typically induces other cardiovascular events, including myocardial infarction and heart failure, posing a serious threat to patient safety. However, AP's complex pathological mechanisms and developmental processes introduce significant challenges in the rapid diagnosis and accurate treatment of its different subtypes, including stable angina pectoris (SAP), unstable angina pectoris (UAP), and variant angina pectoris (VAP).

View Article and Find Full Text PDF

Background: The recent European-ancestry based genome-wide association study (GWAS) of Alzheimer disease (AD) by Bellenguez2022 has identified 75 significant genetic loci, but only a few have been functionally mapped to effector gene level. Besides the large-scale RNA expression, protein and metabolite levels are key molecular traits bridging the genetic variants to AD risk, and thus we decided to integrate them into the genetic analysis to pinpoint key proteins and metabolites underlying AD etiology. Few studies have generated more than one layer of post-transcriptional phenotypes, limiting the scale of biological translation of disease modifying treatments.

View Article and Find Full Text PDF

Objective: Somatic variants causing epilepsy are challenging to detect, as they are only present in a subset of brain cells (e.g., mosaic), resulting in low variant allele frequencies.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD), characterized by significant brain volume reduction, is influenced by genetic predispositions related to brain volumetric phenotypes. While genome-wide association studies (GWASs) have linked brain imaging-derived phenotypes (IDPs) with AD, existing polygenic risk scores (PRSs) based models inadequately capture this relationship. We develop BrainNetScore, a network-based model enhancing AD risk prediction by integrating genetic associations between multiple brain IDPs and AD incidence.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Huashan Hospital, Fudan University, Shanghai, Shanghai, China.

Background: Alzheimer's disease (AD) is a devastating neurological disease with complex genetic etiology, yet most known loci were only identified from the late-onset type of European ancestry.

Method: We performed a two-stage genome-wide association study (GWAS) of AD totaling 6,878 Chinese and 487,511 European individuals.

Result: We demonstrated a shared genetic architecture between early- and late-onset AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!