The mechanism of high-frequency stimulation used in deep brain stimulation (DBS) for Parkinson's disease (PD) has not been completely elucidated. Previously, high-frequency stimulation of the rat entopeduncular nucleus, a basal ganglia output nucleus, elicited an increase in [K(+)](e) to 18 mm, in vitro. In this study, we assessed whether elevated K(+) can elicit DBS-like therapeutic effects in hemiparkinsonian rats by employing the limb-use asymmetry test and the self-adjusting stepping test. We then identified how these effects were meditated with in-vivo and in-vitro electrophysiology. Forelimb akinesia improved in hemiparkinsonian rats undergoing both tests after 20 mm KCl injection into the substantia nigra pars reticulata (SNr) or the subthalamic nucleus. In the SNr, neuronal spiking activity decreased from 38.2 ± 1.2 to 14.6 ± 1.6 Hz and attenuated SNr beta-frequency (12-30 Hz) oscillations after K(+) treatment. These oscillations are commonly associated with akinesia/bradykinesia in patients with PD and animal models of PD. Pressure ejection of 20 mm KCl onto SNr neurons in vitro caused a depolarisation block and sustained quiescence of SNr activity. In conclusion, our data showed that elevated K(+) injection into the hemiparkinsonian rat SNr improved forelimb akinesia, which coincided with a decrease in SNr neuronal spiking activity and desynchronised activity in SNr beta frequency, and subsequently an overall increase in ventral medial thalamic neuronal activity. Moreover, these findings also suggest that elevated K(+) may provide an ionic mechanism that can contribute to the therapeutic effects of DBS for the motor treatment of advanced PD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ejn.12040 | DOI Listing |
J Chem Inf Model
January 2025
Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain.
Desalination of seawater by forward osmosis is a technology potentially able to address the global water scarcity problem. The major challenge limiting its widespread practical application is the design of a draw solute that can be separated from water by an energetically efficient process and then reused for the next cycle. Recent experiments demonstrate that a promising draw solute for forward-osmosis desalination is tetrabutylphosphonium 2,4,6-trimethylbenzenesulfonate ([P][TMBS]).
View Article and Find Full Text PDFAcc Chem Res
January 2025
Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.
ConspectusWater-in-salt electrolytes (WiSEs) are promising electrolytes for next-generation lithium-ion batteries (LIBs), offering critical advantages like nonflammability and improved safety. These electrolytes have extremely high salt concentrations and exhibit unique solvation structures and transport mechanisms dominated by the formation of ion networks and aggregates. These ion networks are central to the performance of WiSEs, govern the transport properties and stability of the electrolyte, deviating from conventional dilute aqueous or organic electrolytes.
View Article and Find Full Text PDFMolecules
December 2024
School of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China.
The molecular chains of recycled polyethylene terephthalate (rPET) show breakage during daily use, causing poor crystallization and leading to mechanical properties that, when blended with the nucleating agent, become an effective method of solving this problem. The salt-nucleating agent sodium benzoate (SB), disodium terephthalate (DT), and trisodium 1,3,5benzene tricarboxylic (TBT) were synthesized, and an rPET/nucleating agent blend was prepared. The intrinsic viscosity () results showed that the of the rPET/SB was decreased, which indicated the breakage of the rPET molecular chains.
View Article and Find Full Text PDFMolecules
December 2024
State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
The efficient removal of dyes is of significant importance for environmental purification and human health. In this study, a novel material (Si-MPTS-IL) has been synthesized by the immobilization of imidazole ionic liquids (ILs) onto nano-silica using the radiation grafting technique. The adsorption performance of Si-MPTS-IL for Coomassie Brilliant Blue (CBB) removal is studied by a series of static adsorption experiments.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States. Electronic address:
Cytochrome P450 (P450) 4A11 is a human P450 family 4 ω-oxidase that selectively catalyzes the hydroxylation of the terminal methyl group of fatty acids. Cytosolic lipids are the substrates for the enzyme but are considered to be primarily bound in cells by liver fatty acid binding protein (FABP1). Lipid binding to recombinant FABP1 with a fluorophore displacement assay showed substantial preference of FABP1 for ≥16-carbon fatty acids (K < 70 nM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!