Down-regulation of PvTRE1 enhances nodule biomass and bacteroid number in the common bean.

New Phytol

Departamento de Biología Molecular de Plantas, Instituto de Biotecnología/Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, México.

Published: January 2013

Legume-rhizobium interactions have been widely studied and characterized, and the disaccharide trehalose has been commonly detected during this symbiotic interaction. It has been proposed that trehalose content in nodules during this symbiotic interaction might be regulated by trehalase. In the present study, we assessed the role of trehalose accumulation by down-regulating trehalase in the nodules of common bean plants. We performed gene expression analysis for trehalase (PvTRE1) during nodule development. PvTRE1 was knocked down by RNA interference (RNAi) in transgenic nodules of the common bean. PvTRE1 expression in nodulated roots is mainly restricted to nodules. Down-regulation of PvTRE1 led to increased trehalose content (78%) and bacteroid number (almost one order of magnitude). In addition, nodule biomass, nitrogenase activity, and GOGAT transcript accumulation were significantly enhanced too. The trehalose accumulation, triggered by PvTRE1 down-regulation, led to a positive impact on the legume-rhizobium symbiotic interaction. This could contribute to the agronomical enhancement of symbiotic nitrogen fixation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.12002DOI Listing

Publication Analysis

Top Keywords

common bean
12
symbiotic interaction
12
down-regulation pvtre1
8
nodule biomass
8
bacteroid number
8
trehalose content
8
trehalose accumulation
8
nodules common
8
trehalose
5
pvtre1
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!