A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Surface modification of silicone for biomedical applications requiring long-term antibacterial, antifouling, and hemocompatible properties. | LitMetric

Silicone has been used for peritoneal dialysis (PD) catheters for several decades. However, bacteria, platelets, proteins, and other biomolecules tend to adhere to its hydrophobic surface, which may lead to PD outflow failure, serious infection, or even death. In this work, a cross-linked poly(poly(ethylene glycol) dimethacrylate) (P(PEGDMA)) polymer layer was covalently grafted on medical-grade silicone surface to improve its antibacterial and antifouling properties. The P(PEGDMA)-grafted silicone (Silicone-g-P(PEGDMA)) substrate reduced the adhesion of Staphylococcus aureus , Escherichia coli , and Staphylococcus epidermidis , as well as 3T3 fibroblast cells by ≥90%. The antibacterial and antifouling properties were preserved after the modified substrate was aged for 30 days in phosphate buffer saline. Further immobilization of a polysulfobetaine polymer, poly((2-(methacryloyloxy)ethyl)dimethyl-(3-sulfopropyl)ammonium hydroxide) (P(DMAPS)), on the Silicone-g-P(PEGDMA) substrate via thiol-ene click reaction leads to enhanced antifouling efficacy and improved hemocompatibility with the preservation of the antibacterial property. Compared to pristine silicone, the so-obtained Silicone-g-P(PEGDMA)-P(DMAPS) substrate reduced the absorption of bovine serum albumin and bovine plasma fibrinogen by ≥80%. It also reduced the number of adherent platelets by ≥90% and significantly prolonged plasma recalcification time. The results indicate that surface grafting with P(PEGDMA) and P(DMAPS) can be potentially useful for the modification of silicone-based PD catheters for long-term applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la303438tDOI Listing

Publication Analysis

Top Keywords

antibacterial antifouling
12
antifouling properties
8
silicone-g-ppegdma substrate
8
substrate reduced
8
silicone
5
surface
4
surface modification
4
modification silicone
4
silicone biomedical
4
biomedical applications
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!