G protein-coupled receptor 37 (GPR37) is suggested to be implicated in the pathogenesis of Parkinson's disease and is accumulating in Lewy bodies within afflicted brain regions. Over-expressed GPR37 is prone to misfolding and aggregation, causing cell death via endoplasmic reticulum stress. Although the cytotoxicity of misfolded GPR37 is well established, effects of the functional receptor on cell viability are still unknown. An N2a cell line stably expressing green fluorescent protein (GFP)-tagged human GPR37 was created to study its trafficking and effects on cell viability upon challenge with the toxins 1-methyl-4-phenylpyridinium (MPP+), rotenone and 6-hydroxydopamine (6-OHDA). Neuronal-like differentiation into a tyrosine hydroxylase expressing phenotype, using dibutyryl-cAMP, induced trafficking of GPR37 to the plasma membrane. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability and lactate dehydrogenase (LDH) cell death assays revealed that GPR37 was protective against all three toxins in differentiated cells. In undifferentiated cells, the majority of GPR37 was cytoplasmic and the protective effects were more variable: GPR37 expression protected against rotenone and MPP+ but not against 6-OHDA in MTT assays, while it protected against 6-OHDA but not against MPP+ or rotenone in lactate dehydrogenase (LDH) assays. These results suggest that GPR37 functionally trafficked to the plasma membrane protects against toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jnc.12081 | DOI Listing |
J Mol Neurosci
September 2024
Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, 47500, Bandar Sunway, Malaysia.
Parkinson's disease (PD) is a common motor neurodegenerative disease that still lacks effective therapeutic options. Previous studies have reported that lactoferrin exhibited neuroprotective effects in cellular and animal models of PD, typically induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 1-methyl-4-phenylpyridinium (MPP) synthetic toxin. However, the neuroprotective capacity of lactoferrin in the rotenone-induced cellular model of PD remains relatively less established.
View Article and Find Full Text PDFCNS Neurosci Ther
July 2024
Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, China.
Environ Int
April 2024
Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands; MHeNS, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands.
Ageing Res Rev
June 2024
Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran. Electronic address:
Parkinson's disease is predominantly caused by dopaminergic neuron loss in the substantia nigra pars compacta and the accumulation of alpha-synuclein protein. Though the general consensus is that several factors, such as aging, environmental factors, mitochondrial dysfunction, accumulations of neurotoxic alpha-synuclein, malfunctions of the lysosomal and proteasomal protein degradation systems, oxidative stress, and neuroinflammation, are involved in the neurodegeneration process of Parkinson's disease, the precise mechanism by which all of these factors are triggered remains unknown. Typically, neurotoxic compounds such as rotenone, 6-hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-methyl 4-phenyl pyridinium (mpp), paraquat, and maneb are used to Preclinical models of Parkinson's disease Ferulic acid is often referred to by its scientific name, 4-hydroxy-3-methoxycinnamic acid (C10H10O4), and is found naturally in cereals, fruits, vegetables, and bee products.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2023
In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany.
To characterize the hits from a phenotypic neurotoxicity screen, we obtained transcriptomics data for valinomycin, diethylstilbestrol, colchicine, rotenone, 1-methyl-4-phenylpyridinium (MPP), carbaryl and berberine (Ber). For all compounds, the concentration triggering neurite degeneration correlated with the onset of gene expression changes. The mechanistically diverse toxicants caused similar patterns of gene regulation: the responses were dominated by cell de-differentiation and a triggering of canonical stress response pathways driven by ATF4 and NRF2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!