Botrytis cinerea is an aggressive plant pathogen causing gray mold disease on various plant species. In this study, we identified the genetic origin for significantly differing phenotypes of the two sequenced B. cinerea isolates, B05.10 and T4, with regard to light-dependent differentiation, oxalic acid (OA) formation and virulence. By conducting a map-based cloning approach we identified a single nucleotide polymorphism (SNP) in an open reading frame encoding a VELVET gene (bcvel1). The SNP in isolate T4 results in a truncated protein that is predominantly found in the cytosol in contrast to the full-length protein of isolate B05.10 that accumulates in the nuclei. Deletion of the full-length gene in B05.10 resulted in the T4 phenotype, namely light-independent conidiation, loss of sclerotial development and oxalic acid production, and reduced virulence on several host plants. These findings indicate that the identified SNP represents a loss-of-function mutation of bcvel1. In accordance, the expression of the B05.10 copy in T4 rescued the wild-type/B05.10 phenotype. BcVEL1 is crucial for full virulence as deletion mutants are significantly hampered in killing and decomposing plant tissues. However, the production of the two best known secondary metabolites, the phytotoxins botcinic acid and botrydial, are not affected by the deletion of bcvel1 indicating that other factors are responsible for reduced virulence. Genome-wide expression analyses of B05.10- and Δbcvel1-infected plant material revealed a number of genes differentially expressed in the mutant: while several protease- encoding genes are under-expressed in Δbcvel1 compared to the wild type, the group of over-expressed genes is enriched for genes encoding sugar, amino acid and ammonium transporters and glycoside hydrolases reflecting the response of Δbcvel1 mutants to nutrient starvation conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3485325 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0047840 | PLOS |
Genes (Basel)
December 2024
Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Republic of Korea.
Background/objectives: is distributed in Korea, China, and Japan. It was first identified as the genus and then reclassified as by Kitagawa. Some species are used as herbal medicine and are often confused with the similar form .
View Article and Find Full Text PDFGene Expr Patterns
December 2024
College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China. Electronic address:
Deer antlers exhibit rapid growth during the velvet phase. As a critical endogenous growth factor in animals, midkine (MDK) is likely closely associated with the growth of antlers. However, the spatio-temporal expression pattern of MDK during the velvet phase was unclear.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
Antlers are the sole mammalian organs capable of continuous regeneration. This distinctive feature has evolved into various biomedical models. Research on mechanisms of antler growth, development, and ossification provides valuable insights for limb regeneration, cartilage-related diseases, and cancer mechanisms.
View Article and Find Full Text PDFmBio
October 2024
Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain.
Unlabelled: Sexual reproduction in fungi allows genetic recombination and increases genetic diversity, allowing adaptation and survival. The velvet complex is a fungal-specific protein assembly that regulates development, pathogenesis, and secondary metabolism in response to environmental cues, such as light. In , this complex comprises VE-1, VE-2, and LAE-1.
View Article and Find Full Text PDFPlant Dis
September 2024
Nanjing Agricultural University, Department of Plant Pathology, No. 1 Weigang Rd, Nanjing, China, 210095;
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!