Gene-specific, age-dependent regulations are common at the transcriptional and translational levels, while protein transport into organelles is generally thought to be constitutive. Here we report a new level of differential age-dependent regulation and show that chloroplast proteins are divided into three age-selective groups: group I proteins have a higher import efficiency into younger chloroplasts, import of group II proteins is nearly independent of chloroplast age, and group III proteins are preferentially imported into older chloroplasts. The age-selective signal is located within the transit peptide of each protein. A group III protein with its transit peptide replaced by a group I transit peptide failed to complement its own mutation. Two consecutive positive charges define the necessary motif in group III signals for older chloroplast preference. We further show that different members of a gene family often belong to different age-selective groups because of sequence differences in their transit peptides. These results indicate that organelle-targeting signal peptides are part of cells' differential age-dependent regulation networks. The sequence diversity of some organelle-targeting peptides is not a result of the lack of selection pressure but has evolved to mediate regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3484058PMC
http://dx.doi.org/10.1371/journal.pbio.1001416DOI Listing

Publication Analysis

Top Keywords

differential age-dependent
12
group iii
12
transit peptide
12
signal peptides
8
age-dependent regulation
8
age-selective groups
8
group proteins
8
group
6
age-dependent import
4
regulation
4

Similar Publications

is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and (. CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin.

View Article and Find Full Text PDF

Quantifying the mechanical response of the biological milieu (such as the cell's interior) and complex fluids (such as biomolecular condensates) would enable a better understanding of cellular differentiation and aging and accelerate drug discovery. Here we present time-shared optical tweezer microrheology to determine the frequency- and age-dependent viscoelastic properties of biological materials. Our approach involves splitting a single laser beam into two near-instantaneous time-shared optical traps to carry out simultaneous force and displacement measurements and quantify the mechanical properties ranging from millipascals to kilopascals across five decades of frequency.

View Article and Find Full Text PDF

Background: Interleaflet haemorrhage (IH) plays a well-recognized detrimental role in calcified aortic valve disease (CAVD). However, IH-induced fibro-osteogenic responses in valvular interstitial cells (VICs) appear to be triggered under specific pathological conditions. Iron deficiency (ID), a common co-morbidity in CAVD, may influence these responses.

View Article and Find Full Text PDF

Background: Age plays a significant role in susceptibility to enterotoxigenic (ETEC) infections, yet the distribution of ETEC virulence factors across age groups remains understudied. This study investigated the differential pathogenic profiles ETEC across various age groups, emphasizing the importance of selecting potential ETEC antigens tailored to infection patterns in infants and adults in Bangladesh.

Methods: This study utilized the icddr,b's 2% systematic hospital surveillance data of diarrheal patients ( = 14,515) from 2017 to 2022 to examine the age-specific pathogenesis and clinical manifestations of ETEC infections.

View Article and Find Full Text PDF

Global stability for a mosquito-borne disease model with continuous-time age structure in the susceptible and relapsed host classes.

Math Biosci Eng

November 2024

Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.

Mosquito-borne infectious diseases represent a significant public health issue. Age has been identified as a key risk factor for these diseases, and another phenomenon reported is relapse, which involves the reappearance of symptoms after a symptom-free period. Recent research indicates that susceptibility to and relapse of mosquito-borne diseases are frequently age-dependent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!