Protein disulfide isomerase (PDI) is an oxidoreductase assisting oxidative protein folding in the endoplasmic reticulum of all types of cells, including neurons and glia. In neurodegenerative disorders, such as amyotrophic lateral sclerosis (ALS), up-regulation of PDI is an important part of unfolded protein response (UPR) that is thought to represent an adaption reaction and thereby protect the neurons. Importantly, studies on animal models of familial ALS with mutant Cu/Zn superoxide dismutase 1 (SOD1) have shown that the mutant SOD1 in astrocytes or microglia strongly regulates the progression of the disease. Here, we found an early up-regulation of PDI in microglia of transgenic (tg) mutant SOD1 mice, indicating that in addition to neurons, UPR takes place in glial cells in ALS. The observation was supported by the finding that also the expression of a UPR marker GADD34 (growth arrest and DNA damage-inducible protein) was induced in the spinal cord glia of tg mutant SOD1 mice. Because mutant SOD1 can cause sustained activation of NADPH oxidase (NOX), we investigated the role of PDI in UPR-induced NOX activation in microglia. In BV-2 microglia, UPR resulted in NOX activation with increased production of superoxide and increased release of tumor necrosis factor-α. The phenomenon was recapitulated in primary rat microglia, murine macrophages and human monocytes. Importantly, pharmacological inhibition of PDI or its down-regulation by short interfering RNAs prevented NOX activation in microglia and subsequent production of superoxide. Thus, results strongly demonstrate that UPR, caused by protein misfolding, may lead to PDI-dependent NOX activation and contribute to neurotoxicity in neurodegenerative diseases including ALS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/hmg/dds472 | DOI Listing |
Int J Mol Sci
December 2024
Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
The predominant neurodegenerative diseases, Alzheimer's disease, Parkinson's disease, dementia with Lewy Bodies, Huntington's disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are rarely pure diseases but, instead, show a diversity of mixed pathologies. At some level, all of them share a combination of one or more different toxic biomarker proteins: amyloid beta (Aβ), phosphorylated Tau (pTau), alpha-synuclein (αSyn), mutant huntingtin (mHtt), fused in sarcoma, superoxide dismutase 1, and TAR DNA-binding protein 43. These toxic proteins share some common attributes, making them potentially universal and simultaneous targets for therapeutic intervention.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
Department of Medical Laboratory Technology, Faculty of Medical Applied Science, Northern Border University, Arar, Saudi Arabia.
Superoxide dismutase 1 (SOD1) is a vital enzyme responsible for attenuating oxidative stress through its ability to facilitate the dismutation of the superoxide radical into oxygen and hydrogen peroxide. The progressive loss of motor neurons characterize amyotrophic lateral sclerosis (ALS), a crippling neurodegenerative disease that is caused by mutations in the SOD1 gene. In this study, mutational analysis was performed to study the various mutations, the pathogenicity and stability ΔΔG (binding free energy) of the variant of SOD1.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India. Electronic address:
Neurodegenerative disorders are characterized by a progressive decline of specific neuronal populations in the brain and spinal cord, typically containing aggregates of one or more proteins. They can result in behavioral alterations, memory loss and a decline in cognitive and motor abilities. Various pathways and mechanisms have been outlined for the potential treatment of these diseases, where redox regulation is considered as one of the most common druggable targets.
View Article and Find Full Text PDFProteins
December 2024
Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
Disturbances in metal ion homeostasis associated with amyotrophic lateral sclerosis (ALS) have been described for several years, but the exact mechanism of involvement is not well understood. To elucidate the role of metalation in superoxide dismutase (SOD1) misfolding and aggregation, we comprehensively characterized the structural features (apo/holo forms) of WT-SOD1 and P66R mutant in loop IV. Using computational and experimental methodologies, we assessed the physicochemical properties of these variants and their correlation with protein aggregation at the molecular level.
View Article and Find Full Text PDFMol Neurodegener
November 2024
Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!