Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: A major feature of chronic wounds is the loss of tissue, with the exposure of dermal components preventing primary closure and leading to bacterial colonization. Bacterial colonization has been proposed as one of the common underlying pathologies present in chronic wounds. The objective of this exploratory study was to identify bacteria cultured from chronic venous leg ulcers and test for proteolytic activity that degrades matrix substrates.
Method: Bacteria were isolated, cultured, and identified from six subjects (average age = 62.8 years) over 2-10 months under an approved protocol using swabs and microbiological culture media. Proteolytic activity against (a) gelatin, (b) an elastin substrate, and (c) a serine/trypsin-sensitive substrate was determined using a colorimetric plate assay with an ELISA plate reader and zymography.
Results: We identified 13 bacteria that expressed proteolytic activity against one or more of the tested substrates. Of these, six were Gram-positive (Staphylococcus aureus, Enterococcus faecalis, Staphylococcus epidermidis, Streptococcus agalactiae, Corynebacterium, and Streptococcus bovis) and seven were Gram-negative (Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis, Morganella morganii, Klebsiella pneumoniae, Bacteroides fragilis, and Serratia marcescens) organisms. Two of these, S. aureus and P. aeruginosa, are recognized wound pathogens.
Conclusions: Multiple bacteria species isolated from colonized venous leg ulcers have the capacity to secrete proteases capable of degrading components of the extracellular matrix important for wound healing. Matrix degradation by bacteria may contribute to delays in tissue deposition and repair, suggesting that treatment of chronic wounds should include appropriate management of colonizing bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1099800412464683 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!