The objective of this study was to determine whether single nucleotide polymorphisms (SNPs) in the SCNN1A (3), SCNN1B (12), SCNN1G (6), and TRPV1 (10) genes affect salt taste perception. Participants were men (n = 28) and women (n = 67) from the Toronto Nutrigenomics and Health study aged 21-31 years. Taste thresholds were determined using a 3-alternative forced-choice staircase model with solutions ranging from 9×10(-6) to 0.5 mol/L. Suprathreshold taste sensitivity to 0.01-1.0 mol/L salt solutions was assessed using general labeled magnitude scales. None of the SNPs in the SCNN1A and SCNN1G genes were significantly associated with either outcome. In the SCNN1B gene, 2 SNPs in intronic regions of the gene modified suprathreshold taste sensitivity (mean iAUC ± SE). Those homozygous for the A allele of the rs239345 (A>T) polymorphism and the T allele of the rs3785368 (C>T) polymorphism perceived salt solutions less intensely than carriers of the T or C alleles, respectively (rs239345: 70.82±12.16 vs. 96.95±3.75, P = 0.02; rs3785368: 57.43±19.85 vs. 95.57±3.66, P = 0.03) In the TRPV1 gene, the rs8065080 (C>T, Val585Ile) polymorphism modified suprathreshold taste sensitivity where carriers of the T allele were significantly more sensitive to salt solutions than the CC genotype (98.3±3.8 vs. 74.1±8.3, P = 0.008). Our findings show that variation in the TRPV1 and the SCNN1B genes may modify salt taste perception in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/chemse/bjs090 | DOI Listing |
Int J Sports Physiol Perform
December 2024
School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia.
Purpose: The present study investigated the effect of unpleasant salty or bitter tastes on cycling sprint performance and knee-extensor force characteristics in different fatigue states.
Methods: Following a familiarization session, 11 trained male cyclists completed 3 experimental trials (salty, bitter, and water) in a randomized crossover order. In each trial, participants cycled at 85% of the respiratory compensation point for 45 minutes and then, after a 5-minute rest, completed a 1-minute sprint.
To prepare dual-functional seasoning ingredients with a salty-umami taste, five proteases were applied to hydrolyze proteins, preparing enzymatic hydrolysates. Their taste compounds along with the salty-umami taste, were investigated. The results revealed that enzymatic hydrolysis facilitated the release of taste compounds from .
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States.
Through a quantitative analysis of saltiness perception, favorable enzymatic hydrolysis parameters were confirmed for the preparation of saltiness-enhancing peptide mixtures from . The enzymatic hydrolysate was fractionated into four fractions (F1-F4) by gel chromatography, with F3 exhibiting the strongest saltiness-enhancing effect (22% increase). LC-MS/MS analysis of F3 identified 36 peptides, and their secondary structures and interactions with the TMC4 receptor were examined through circular dichroism spectroscopy and molecular docking.
View Article and Find Full Text PDFImportance: Classification of persons with long COVID (LC) or post-COVID-19 condition must encompass the complexity and heterogeneity of the condition. Iterative refinement of the classification index for research is needed to incorporate newly available data as the field rapidly evolves.
Objective: To update the 2023 research index for adults with LC using additional participant data from the Researching COVID to Enhance Recovery (RECOVER-Adult) study and an expanded symptom list based on input from patient communities.
Foods
November 2024
Department of Food and Nutrition, Changwon National University, Changwon 51140, Republic of Korea.
The optimum processing conditions for green laver chips were determined using response surface methodology (RSM) to improve taste and reduce off-flavors by applying reaction flavor and air-frying techniques. The optimum composition (/) for the chips included 20% green laver, 20% hairtail surimi, and 60% flour. Additional ingredients included distilled water (90 mL) with GDL (3 g), NaHCO₃ (2 g), salt (1 g), sugar (12 g), roasted soybean powder (1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!