Background And Aims: Acidic soils are dominated chemically by more ammonium and more available, so more potentially toxic, aluminium compared with neutral to calcareous soils, which are characterized by more nitrate and less available, so less toxic, aluminium. However, it is not known whether aluminium tolerance and nitrogen source preference are linked in plants.
Methods: This question was investigated by comparing the responses of 30 rice (Oryza sativa) varieties (15 subsp. japonica cultivars and 15 subsp. indica cultivars) to aluminium, various ammonium/nitrate ratios and their combinations under acidic solution conditions.
Key Results: indica rice plants were generally found to be aluminium-sensitive and nitrate-preferring, while japonica cultivars were aluminium-tolerant and relatively ammonium-preferring. Aluminium tolerance of different rice varieties was significantly negatively correlated with their nitrate preference. Furthermore, aluminium enhanced ammonium-fed rice growth but inhibited nitrate-fed rice growth.
Conclusions: The results suggest that aluminium tolerance in rice is antagonistic with nitrate preference and synergistic with ammonium preference under acidic solution conditions. A schematic diagram summarizing the interactions of aluminium and nitrogen in soil-plant ecosystems is presented and provides a new basis for the integrated management of acidic soils.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3523647 | PMC |
http://dx.doi.org/10.1093/aob/mcs234 | DOI Listing |
Phys Rev Lett
December 2024
Google Quantum AI, Santa Barbara, California 93117, USA.
Quantum error correction (QEC) provides a practical path to fault-tolerant quantum computing through scaling to large qubit numbers, assuming that physical errors are sufficiently uncorrelated in time and space. In superconducting qubit arrays, high-energy impact events can produce correlated errors, violating this key assumption. Following such an event, phonons with energy above the superconducting gap propagate throughout the device substrate, which in turn generate a temporary surge in quasiparticle (QP) density throughout the array.
View Article and Find Full Text PDFPhysiol Mol Biol Plants
December 2024
Department of Fruit Science, College of Horticulture and Forestry, CAU (I), Pasighat, Arunachal Pradesh 791102 India.
An experiment was performed to understand the effects of aluminium toxicity (AlCl·6HO) on Kachai lemon growth and development. The toxic effects of aluminium were assessed for 45 days in sand media. With untreated pots serving as the control, seedlings of 1 month old were exposed to three concentrations of AlCl·6HO: 300 μM, 600 μM and 900 μM.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
Department of Computer Science, San Diego State University, San Diego, CA 92115, USA.
Porous materials and structures, such as subterranean fire ant nests, are abundant in nature. It is hypothesized that these structures likely have evolved biological adaptations that enhance their collapse resistance. This research aims to elucidate the collapse-resistant mechanisms of pore geometries in fire ant nests.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
Background: MYB transcription factors (TFs) play crucial roles in the response to diverse abiotic and biotic stress factors in plants. In this study, the GsMYB10 gene encoding a MYB-CC transcription factor was cloned from wild soybean BW69 line. However, there is less report on the aluminum (Al)-tolerant gene in this subfamily.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Materials, Technical University of Kosice, Metallurgy and Recycling, Letna 1/9, 042 00 Kosice, Slovakia.
High-pressure die casting (HPDC) of aluminum alloys is one of the most efficient manufacturing methods, offering high repeatability and the ability to produce highly complex castings. The cast parts are characterized by good surface quality, high dimensional accuracy, and high tensile strength. Continuous technological advancements are driving the increase in part complexity and quality requirements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!