This chapter summarizes the principles of RSNO measurement in the gas phase, utilizing ozone-based chemiluminescence and the copper cysteine (2C)±carbon monoxide (3C) reagent. Although an indirect method for quantifying RSNOs, this assay represents one of the most robust methodologies available. It exploits the NO detection sensitivity of ozone based chemiluminescence, which is within the range required to detect physiological concentrations of RSNO metabolites. Additionally, the specificity of the copper cysteine (2C and 3C) reagent for RSNOs negates the need for sample pretreatment, thereby minimizing the likelihood of sample contamination (false positive results), or the loss of certain highly labile RSNO species. Herein, we outline the principles of this methodology, summarizing key issues, potential pitfalls and corresponding solutions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3584190 | PMC |
http://dx.doi.org/10.1016/j.ymeth.2012.10.008 | DOI Listing |
J Biol Chem
January 2025
Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal. Electronic address:
The translocation of proteins from the cytoplasm to the endoplasmic reticulum occurs via a conserved Sec61 protein channel. Previously, we reported that mutations in histones cause downregulation of a CUP1 copper metallothionein and copper exposure inhibits the activity of Sec61. However, the role of epigenetic dysregulation on the activity of channel is not clear.
View Article and Find Full Text PDFUnlabelled: The ability to sense, import but also detoxify copper (Cu) has been shown to be crucial for microbial pathogens to survive within the host. Previous studies conducted with the opportunistic human fungal pathogen ( ) have revealed two extreme Cu environments encountered during infection: A high Cu environment within the lung and a low Cu environment within the brain. However, how senses these different host Cu microenvironments, and the consequences of a blunted Cu stress adaption for pathogenesis, are not well understood.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang, 320700, China. Electronic address:
Silicosis is a disease caused by prolonged exposure to silica dust. It is the most typical, rapidly progressive, and fatal form of pneumoconiosis. Currently, there is no specific medication available for the treatment of silicosis.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia.
Otitis media (OM) is a frequent disease with incidence rate of 5300 cases per 100,000 people. Recent studies showed that polymicrobial biofilm formation represents a significant pathogenic mechanism in recurrent and chronic forms of OM. Biofilm enables bacteria to resist antibiotics that would typically be recommended in guidelines, contributing to the ineffectiveness of current antimicrobial strategies.
View Article and Find Full Text PDFFront Nutr
November 2024
College of Life Sciences, Northwest Agriculture and Forest University, Xianyang, Shaanxi, China.
Introduction: As the scale of cultivation expands, challenges such as substrate shortages and rising production costs in mushroom cultivation have become increasingly prominent. Fruit tree pruning residue has the potential to serve as an alternative substrate, offering a sustainable solution. This study evaluates the feasibility of incorporating various types of fruit tree pruning residues into cultivation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!