Vaccination is the most effective method used to reduce the morbidity and mortality of influenza infections. However, as exemplified in the current swine-origin influenza virus (S-OIV) pandemic, the global manufacturing capacity of influenza vaccines is severely limited. In the present proof-of-concept study, we combined cell substrate selection and antigen engineering with adjuvant development to design a potential pandemic influenza vaccine candidate, in which CpG oligodeoxynucleotides (CpG-ODN) plus alum was used as a composite adjuvant to enhance the immunogenicity of insect cell-expressed recombinant hemagglutinin (rHA). Our candidate vaccine was found to be effective in inducing protective humoral as well as cellular immunity in mice and able to protect the immunized mice from related influenza virus challenge. If this candidate vaccine is validated in humans, vaccine development can be started immediately after the release of the first HA sequence of any pandemic influenza virus. Moreover, given the potential of large-scale manufacturing capacity of the recombinant antigen, in combination with the antigen-sparing effect of the composite adjuvant, this technology could be an invaluable asset in the fight against pandemic influenza.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vaccine.2012.10.054 | DOI Listing |
Influenza Other Respir Viruses
January 2025
Netherlands Institute for Health Services Research (Nivel), Utrecht, The Netherlands.
Background: Vaccination is a key measure in influenza control, yet global coverage rates remain low, although previous research reported an increase in influenza vaccination coverage rates (VCR) after the onset of the COVID-19 pandemic. This study aims to assess whether these changes were sustained over time by analyzing VCR trends from 2012 to 2023 in the countries included in the FluCov project.
Methods: Data on influenza VCR from 2012 to 2023 for different age and risk groups were extracted from national health organizations and international sources for countries included in the FluCov project.
J Neurol Sci
January 2025
Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan.
Background: Acute encephalopathy is a severe condition predominantly affecting children with viral infections. The purpose of this study was to elucidate the epidemiology, treatment, and management of acute encephalopathy. The study also aimed to understand how the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has affected epidemiological trends.
View Article and Find Full Text PDFDrugs Aging
January 2025
University Hospitals of Cleveland, 11100 Euclid Ave, Mailstop 5083, Cleveland, OH, 44106, USA.
Influenza, a highly contagious respiratory viral illness, poses significant global health risks, particularly affecting older and those with chronic health conditions. Influenza viruses, primarily types A and B, are responsible for seasonal human infections and exhibit a propensity for antigenic drift and shift, contributing to seasonal epidemics and pandemics. The severity of influenza varies, but severe cases often lead to pneumonia, acute respiratory distress syndrome, and multiorgan failure.
View Article and Find Full Text PDFNat Commun
January 2025
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
The continuing emergence of immune evasive SARS-CoV-2 variants and the previous SARS-CoV-1 outbreak collectively underscore the need for broadly protective sarbecovirus vaccines. Targeting the conserved S2 subunit of SARS-CoV-2 is a particularly promising approach to elicit broad protection. Here, we describe a nanoparticle vaccine displaying multiple copies of the SARS-CoV-1 S2 subunit.
View Article and Find Full Text PDFNat Commun
January 2025
School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China.
East, South, and Southeast Asia (together referred to as Southeastern Asia hereafter) have been recognized as critical areas fuelling the global circulation of seasonal influenza. However, the seasonal influenza migration network within Southeastern Asia remains unclear, including how pandemic-related disruptions altered this network. We leveraged genetic, epidemiological, and airline travel data between 2007-2023 to characterise the dispersal patterns of influenza A/H3N2 and B/Victoria viruses both out of and within Southeastern Asia, including during perturbations by the 2009 A/H1N1 and COVID-19 pandemics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!