Fibrils formed by assembly of human islet amyloid polypeptide (hIAPP) are found in most patients with type II diabetes. Structurally, these fibrils are composed of multiple protofilaments and are characterized by extended beta sheets, variable helical twists, and different morphologies. We have previously derived models for the hIAPP protofilament using simulations constrained by data from EPR spectroscopy. In the current work, these models were used as a basis for generating idealized hIAPP protofilaments with symmetrical geometrical properties using a new algorithm, MFIBRIL. We show good agreement of the idealized protofilaments with experimental data for amino acid side chain orientations and geometrical features including the inter-β sheet distance and the protofilament radius. These idealized protofilaments can be used in MFIBRIL to generate fibril models that may be experimentally testable at the molecular level. MFIBRIL can also be used for building structures of any repetitive molecular assembly starting with a single building block obtained from any source.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522432 | PMC |
http://dx.doi.org/10.1021/ci300300e | DOI Listing |
Cell Tissue Res
January 2025
Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation (QF), Hamad Bin Khalifa University (HBKU), Doha, Qatar.
Impaired insulin secretion contributes to the pathogenesis of type 1 diabetes mellitus through autoimmune destruction of pancreatic β-cells and the pathogenesis of severe forms of type 2 diabetes mellitus through β-cell dedifferentiation and other mechanisms. Replenishment of malfunctioning β-cells via islet transplantation has the potential to induce long-term glycemic control in the body. However, this treatment option cannot widely be implemented in clinical due to healthy islet donor shortage.
View Article and Find Full Text PDFCell Transplant
January 2025
Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA.
Although islet transplantation is effective in reducing severe hypoglycemia events and controlling blood glucose in patients with type 1 diabetes, maintaining islet graft function long-term is a significant challenge. Islets from multiple donors are often needed to achieve insulin independence, and even then, islet function can decline over time when metabolic demand exceeds islet mass/insulin secretory capacity. We previously developed a method that calculated the islet graft function index (GFI) and a patient's predicted insulin requirement (PIR) using mathematical nonlinear regression.
View Article and Find Full Text PDFGastroenterol Clin North Am
March 2025
Department of Pediatrics, University of Minnesota, MMC 391, 420 Delaware Street Southeast, Minneapolis, MN 55455, USA. Electronic address:
Diabetes (DM) can occur as a complication of acute, acute recurrent, or chronic pancreatitis, affecting more than 30% of adults with chronic pancreatitis. Data on the pathophysiology and management are limited, especially in pediatric population. Proposed mechanisms include insulin deficiency, insulin resistance, decreased pancreatic polypeptide, and possible beta-cell autoimmunity (in a small subset).
View Article and Find Full Text PDFGastroenterol Clin North Am
March 2025
Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota, 420 Delaware Street Southeast, Minneapolis, MN 55455, USA. Electronic address:
This article provides an up-to-date review of the management of chronic pancreatitis, highlighting advancements in medical therapy, nutritional support, endoscopic and surgical approaches, and emerging treatments. Nutritional management accentuates addressing malabsorption and nutrient deficiencies. Advances in endoscopy and parenchyma-sparing surgical techniques have opened new avenues for improved patient outcomes, with total pancreatectomy and islet autotransplantation offering the only definitive solution for selected patients.
View Article and Find Full Text PDFSci Adv
January 2025
Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
Tissue-specific endothelial cells (ECs) are critical for the homeostasis of pancreatic islets and most other tissues. In vitro recapitulation of islet biology and therapeutic islet transplantation both require adequate vascularization, which remains a challenge. Using human reprogrammed vascular ECs (R-VECs), human islets were functionally vascularized in vitro, demonstrating responsive, dynamic glucose-stimulated insulin secretion and Ca influx.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!