We report a procedure to grow thermo-responsive polymer shells at the surface of magnetic nanocarriers made of multiple iron oxide superparamagnetic nanoparticles embedded in poly(maleic anhydride-alt-1-ocatadecene) polymer nanobeads. Depending on the comonomers and on their relative composition, tunable phase transition temperatures in the range between 26 and 47 °C under physiological conditions could be achieved. Using a suitable microfluidic platform combining magnetic nanostructures and channels mimicking capillaries of the circulatory system, we demonstrate that thermo-responsive nanobeads are suitable for localized drug delivery with combined thermal and magnetic activation. Below the critical temperature nanobeads are stable in suspension, retain their cargo, and cannot be easily trapped by magnetic fields. Increasing the temperature above the critical temperature causes the aggregation of nanobeads, forming clusters with a magnetic moment high enough to permit their capture by suitable magnetic gradients in close proximity to the targeted zone. At the same time the polymer swelling activates drug release, with characteristic times on the order of one hour for flow rates of the same order as those of blood in capillaries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn3028425DOI Listing

Publication Analysis

Top Keywords

magnetic
8
critical temperature
8
controlled release
4
release doxorubicin
4
doxorubicin loaded
4
loaded magnetic
4
magnetic thermo-responsive
4
thermo-responsive nanocarriers
4
nanocarriers magnetic
4
magnetic thermal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!