Introduction: Naturally occurring CD4+CD25+ regulatory T (Treg) cells are central to the maintenance of peripheral tolerance. Impaired activity and/or a lower frequency of these cells lead to systemic lupus erythematosus (SLE). Manipulating the number or activity of Treg cells is to be a promising strategy in treating it and other autoimmune diseases. We have examined the effects of Y27, a novel derivative of 4-hydroxyquinoline-3-formamide, on SLE-like symptoms in MRL/lpr autoimmune mice and BDF1 hybrid mice. Whether the beneficial effect of Y27 involves modulation of CD4+CD25+ Treg cells has also been investigated.

Methods: Female MRL/lpr mice that spontaneously develop lupus were treated orally by gavage with Y27 for 10 weeks, starting at 10 weeks of age. BDF1 mice developed a chronic graft-versus-host disease (GVHD) by two weekly intravenous injections of parental female DBA/2 splenic lymphocytes, characterized by immunocomplex-mediated glomerulonephritis resembling SLE. Y27 was administered to chronic GVHD mice for 12 weeks. Nephritic symptoms were monitored and the percentage of CD4+CD25+FoxP3+ Treg peripheral blood leukocyte was detected with mouse regulatory T cell staining kit by flowcytometry. Purified CD4+CD25+ Tregs were assessed for immune suppressive activity using the mixed lymphocyte reaction.

Results: The life-span of MRL/lpr mice treated with Y27 for 10 weeks was significantly prolonged, proteinuria and renal lesion severity were ameliorated, and blood urea nitrogen, triglyceride and serum anti-double-stranded DNA antibodies were decreased. Similar results were found in chronic GVHD mice. Administration of Y27 had little impact on percentage of the peripheral blood lymphocyte CD4+CD25+Foxp3+ Treg cells in both groups of mice. In contrast, the suppressive capacity of CD4+CD25+ Treg cells in splenocytes was markedly augmented in Y27-treated mice ex vivo.

Conclusions: Experimental evidence of the protect effects of Y27 against autoimmune nephritis has been shown. The mechanism may involve enhancement of the suppressive capacity of CD4+CD25+ Treg cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3674632PMC
http://dx.doi.org/10.1186/ar4078DOI Listing

Publication Analysis

Top Keywords

treg cells
24
cd4+cd25+ treg
12
mice
11
y27
8
y27 novel
8
novel derivative
8
derivative 4-hydroxyquinoline-3-formamide
8
systemic lupus
8
mrl/lpr autoimmune
8
autoimmune mice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!