A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Diffusion, molecular separation, and drug delivery from lipid mesophases with tunable water channels. | LitMetric

Diffusion, molecular separation, and drug delivery from lipid mesophases with tunable water channels.

Langmuir

Food and Soft Materials Science, Institute of Food, Nutrition & Health, ETH Zurich, Schmelzbergstrasse 9, CH-8092 Zürich, Switzerland.

Published: November 2012

Lyotropic liquid crystals characterized by a bicontinuous cubic phase (BCP) have a structure characterized by interpenetrated water channels following triply periodic minimal surfaces, which can be stable in excess water conditions and thus suitable in a multitude of applications. The control of the water channels size in these systems has a direct impact on their use for drug delivery, crystallization, and membrane separation processes. In this work we carry out systematic diffusion studies to show how the control on the water channel dimensions directly correlates with the release and separation performance of bicontinuous cubic phases. Specifically, we tune the water channels diameter of the monolinolein/water system by adding different amounts of sucrose stearate, which, having hydration-enhancing properties, can shift the boundaries of the phase diagram. We then design a model bicontinuous cubic phase lipidic membrane of the Im3m space group, having a sugar ester to monolinolein ratio of 20%, and we follow the diffusion within its water channels, by using molecules that differ systematically in size and molecular conformation, and we demonstrate, for each class of molecules, a diffusion-enhanced process upon increase of the water channel diameter. Finally, we also show the ability of the bicontinuous cubic phase to efficiently and selectively separate nanoparticles of a target size, by choosing an amount of sucrose stearate for which the water channel diameter and the nanoparticle dimensions match, demonstrating the possible use of these systems as filtering membranes of tunable molecular cutoff.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la303833sDOI Listing

Publication Analysis

Top Keywords

water channels
20
bicontinuous cubic
16
cubic phase
12
water channel
12
water
9
drug delivery
8
control water
8
sucrose stearate
8
channel diameter
8
channels
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!