Activation of the HTLV-I promoter by the viral Tax1 transactivator is mediated by a 21 bp sequence motif imperfectly repeated three times and composed of three exactly conserved domains (A, B and C from 5' to 3'). We show here that the Tax1 response requires the integrity of the B domain and of at least one of the flanking A or C domains. We have identified three cellular proteins which bind specifically to the 21 bp motif. One of these is the already well-characterized transcription factor ATF. The other two, namely HEB1 and HEB2, are specific for the 21 bp motif. HEB1 can bind to either domain A or C, but binding of ATF and HEB2 is determined by domain B. However, neither domain B alone, nor ATF/CREB binding sites respond significantly to Tax1. We therefore propose that Tax1 induction of the 21 bp enhancer element requires interaction with the two different cellular proteins identified in this study: HEB1 and HEB2, rather than binding of the ATF factor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC551758PMC
http://dx.doi.org/10.1002/j.1460-2075.1990.tb08194.xDOI Listing

Publication Analysis

Top Keywords

tax1 induction
8
cellular proteins
8
heb1 heb2
8
binding atf
8
tax1
5
induction htlv-i
4
htlv-i enhancer
4
enhancer requires
4
requires cooperation
4
cooperation cellular
4

Similar Publications

Parthanatos is a type of programmed cell death initiated by over-activated poly (ADP-ribose) polymerase 1 (PARP1). Nuclear translocation of apoptosis inducing factor (AIF) is a prominent feature of parthanatos. But it remains unclear how activated nuclear PARP1 induces mitochondrial AIF translocation into nuclei.

View Article and Find Full Text PDF

Alternative NF-κB Signaling Discriminates Induction of the Tumor Marker Fascin by the Viral Oncoproteins Tax-1 and Tax-2 of Human T-Cell Leukemia Viruses.

Cancers (Basel)

January 2022

FAU-Nachwuchsgruppe "Retroviral Pathogenesis" and BMBF Junior Research Group in Infection Research "Milk-Transmission of Viruses", Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.

Transcriptional regulation of the actin-bundling protein and tumor marker Fascin is highly diverse depending on cell and tumor type. Previously, we discovered that the viral oncoprotein Tax-1 of human T-cell leukemia virus type 1 (HTLV-1) considerably enhances Fascin expression in T-cells, depending on classical NF-κB signaling. In this study, we asked if the non-oncogenic Tax-2 of the related HTLV-2 is still able to induce Fascin by using luciferase assays, immunoblot, and qPCR.

View Article and Find Full Text PDF

The exotoxin, mycolactone, is responsible for the immunosuppression and tissue necrosis that characterizes Buruli ulcer. Mycolactone inhibits SEC61-dependent co-translational translocation of proteins into the endoplasmic reticulum and the resultant cytosolic translation triggers degradation of mislocalized proteins by the ubiquitin-proteasome system. Inhibition of SEC61 by mycolactone also activates multiple EIF2S1/eIF2α kinases in the integrated stress response (ISR).

View Article and Find Full Text PDF

KIF5A-dependent axonal transport deficiency disrupts autophagic flux in trimethyltin chloride-induced neurotoxicity.

Autophagy

April 2021

Department of Environmental Medicine, and Department of Emergency Medicine of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Trimethyltin chloride (TMT) is widely used as a constituent of fungicides and plastic stabilizers in the industrial and agricultural fields, and is generally acknowledged to have potent neurotoxicity, especially in the hippocampus; however, the mechanism of induction of neurotoxicity by TMT remains elusive. Herein, we exposed Neuro-2a cells to different concentrations of TMT (2, 4, and 8 μM) for 24 h. Proteomic analysis, coupled with bioinformatics analysis, revealed the important role of macroautophagy/autophagy-lysosome machinery in TMT-induced neurotoxicity.

View Article and Find Full Text PDF

Influenza A virus protein PB1-F2 impairs innate immunity by inducing mitophagy.

Autophagy

February 2021

State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.

Influenza A virus (IAV) infection induces mitophagy, which is essential for the clearance of damaged mitochondria. Dysfunctional mitochondria can be selectively targeted by PINK1, which recruits PRKN/PARK2 and leads to subsequent mitochondrial sequestration within autophagosomes. The IAV PB1-F2 protein translocates to mitochondria, accelerates the mitochondrial fragmentation and impairs the innate immunity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!