AI Article Synopsis

  • Anaplastic thyroid carcinoma (ATC) is a highly aggressive and lethal form of thyroid cancer that often originates from the more treatable papillary thyroid carcinomas (PTC).
  • A study analyzed the mRNA expression profiles of 59 thyroid tumors, revealing significant overlaps between the gene expressions in ATC and PTC, with many genes in ATC being amplified variations of those in PTC.
  • The research identified a distinct molecular signature of aggressiveness in ATC, characterized by processes like inflammation, epithelial to mesenchymal transition, high cell proliferation, and increased glycolysis, highlighting the severe differences in tumor behavior between ATC and PTC.

Article Abstract

Anaplastic thyroid carcinoma (ATC) is the most lethal form of thyroid neoplasia and represents the end stage of thyroid tumor progression. No effective treatment exists so far. ATC frequently derive from papillary thyroid carcinomas (PTC), which have a good prognosis. In this study, we analyzed the mRNA expression profiles of 59 thyroid tumors (11 ATC and 48 PTC) by microarrays. ATC and PTC showed largely overlapping mRNA expression profiles with most genes regulated in all ATC being also regulated in several PTC. 43% of the probes regulated in all the PTC are similarly regulated in all ATC. Many genes modulations observed in PTC are amplified in ATC. This illustrates the fact that ATC mostly derived from PTC. A molecular signature of aggressiveness composed of 9 genes clearly separates the two tumors. Moreover, this study demonstrates gene regulations corresponding to the ATC or PTC phenotypes like inflammatory reaction, epithelial to mesenchymal transition (EMT) and invasion, high proliferation rate, dedifferentiation, calcification and fibrosis processes, high glucose metabolism and glycolysis, lactate generation and chemoresistance. The main qualitative differences between the two tumor types bear on the much stronger EMT, dedifferentiation and glycolytic phenotypes showed by the ATC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3480355PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0037807PLOS

Publication Analysis

Top Keywords

mrna expression
12
atc ptc
12
atc
10
anaplastic thyroid
8
thyroid carcinoma
8
ptc
8
expression profiles
8
regulated atc
8
regulated ptc
8
thyroid
6

Similar Publications

Hyaluronan Directs Alveolar Type II Cell Response to Acute Ozone Exposure in Mice.

Am J Respir Cell Mol Biol

January 2025

Duke Medicine, Medicine, Durham, North Carolina, United States.

Becoming more frequent due to climate change, ozone (O) exposures can cause lung injury. Alveolar type 2 (AT2) cells and hyaluronan (HA), a matrix component, are critical to repairing lung injury and restoring homeostasis. Here, we define the impact of HA on AT2 cells following acute O exposure.

View Article and Find Full Text PDF

Human papillomavirus 16 and human papillomavirus 18 have been associated with different life-threatening cancers, including cervical, lung, penal, vulval, vaginal, anal, and oropharyngeal cancers, while cervical cancer is the most prominent one. Several research studies have suggested that the oncoproteins E6 and E7 are the leading cause of cancers associated with the human papillomavirus infection. Therefore, we developed two mRNA vaccines (V1 and V2) targeting these oncoproteins.

View Article and Find Full Text PDF

The MIR-NAT MAPT-AS1 does not regulate Tau expression in human neurons.

PLoS One

January 2025

Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica, Beerse, Belgium.

The MAPT gene encodes Tau protein, a member of the large family of microtubule-associated proteins. Tau forms large insoluble aggregates that are toxic to neurons in several neurological disorders, and neurofibrillary Tau tangles represent a key pathological hallmark of Alzheimer's disease (AD) and other tauopathies. Lowering Tau expression levels constitutes a potential treatment for AD but the mechanisms that regulate Tau expression at the transcriptional or translational level are not well understood.

View Article and Find Full Text PDF

variants in children with neurodevelopmental impairment are difficult to assess due to their heterogeneity and unclear pathogenic mechanisms. We describe a child with neonatal-onset epilepsy, developmental impairment of intermediate severity, and G256W heterozygosity. Analyzing prior KCNQ2 channel cryoelectron microscopy models revealed G256 as a node of an arch-shaped non-covalent bond network linking S5, the pore turret, and the ion path.

View Article and Find Full Text PDF

Respiratory tract diseases (RTDs) cause airflow limitations and impaired respiratory function, primarily due to pulmonary inflammation and immune dysfunction. var. Kitamur and (CP) are traditional herbs known for their anti-inflammatory and immune-enhancing properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!