Neutrophils use diverse mechanisms to kill pathogens including phagocytosis, exocytosis, generation of reactive oxygen species (ROS), and neutrophil extracellular traps. These mechanisms rely on their ability to mobilize intracellular organelles and to deliver granular cargoes to specific cellular compartments or into the extracellular milieu, but the molecular mechanisms regulating vesicular trafficking in neutrophils are not well understood. MUNC13-4 is a RAB27A effector that coordinates exocytosis in hematopoietic cells, and its deficiency is associated with the human immunodeficiency familial hemophagocytic lymphohistiocytosis type 3. In this work, we have established an essential role for MUNC13-4 in selective vesicular trafficking, phagosomal maturation, and intracellular bacterial killing in neutrophils. Using neutrophils from munc13-4 knock-out (KO) mice, we show that MUNC13-4 is necessary for the regulation of p22(phox)-expressing granule trafficking to the plasma membrane and regulates extracellular ROS production. MUNC13-4 was also essential for the regulation of intracellular ROS production induced by Pseudomonas aeruginosa despite normal trafficking of p22(phox)-expressing vesicles toward the phagosome. Importantly, in the absence of MUNC13-4, phagosomal maturation was impaired as observed by the defective delivery of azurophilic granules and multivesicular bodies to the phagosome. Significantly, this mechanism was intact in RAB27A KO neutrophils. Intracellular bacterial killing was markedly impaired in MUNC13-4 KO neutrophils. MUNC13-4-deficient cells showed a significant increase in neutrophil extracellular trap formation but were unable to compensate for the impaired bacterial killing. Altogether, these findings characterize novel functions of MUNC13-4 in the innate immune response of the neutrophil and have direct implications for the understanding of immunodeficiencies in patients with MUNC13-4 deficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531776 | PMC |
http://dx.doi.org/10.1074/jbc.M112.414029 | DOI Listing |
J Colloid Interface Sci
December 2024
Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing 100048, PR China. Electronic address:
Intractable infected wound caused by drug-resistant bacteria remains a severe healthcare problem. Reactive oxygen species (ROS)-based nanocatalytic therapy (ROS-NT) is harnessed to combat drug-resistant bacterial infection. However, it can also cause immune imbalance and excessive inflammatory responses, postponing subsequent wound healing process.
View Article and Find Full Text PDFBiol Trace Elem Res
December 2024
Agricultural Research Service-Poisonous Plant Research Lab, USDA, Logan, UT, 84341, USA.
Supranutritional Se supplementation may improve immune responses in beef cattle. Immunity is compromised in beef cattle during the periparturient period. This study aims to determine the best time during pregnancy to supplement beef cows with Se-yeast to optimize humoral immunity at parturition.
View Article and Find Full Text PDFAntimicrob Agents Chemother
December 2024
Transplantation/Oncology Program, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, USA.
Carbapenemase-producing (KPC) are globally emerging pathogens that cause life-threatening infections. Novel treatment alternatives are urgently needed. We therefore investigated the effectiveness of three novel bacteriophages (Spivey, Pharr, and Soft) in a neutropenic murine model of KPC gastrointestinal colonization, translocation, and disseminated infection.
View Article and Find Full Text PDFmBio
December 2024
Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
Type VI secretion system (T6SS) is utilized by many Gram-negative bacteria to eliminate competing bacterial species and manipulate host cells. ATCC 17978 utilizes T6SS at the expense of losing pAB3 plasmid to induce contact-dependent killing of competitor microbes, resulting in the loss of antibiotic resistance carried by pAB3. However, the regulatory network associated with T6SS in remains poorly understood.
View Article and Find Full Text PDFEnzyme Microb Technol
December 2024
VBlab - Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba, SP 18023-000, Brazil; Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro P-3810-193, Portugal. Electronic address:
Traditionally, control of coffee plant bacterial halo blight (BHB) caused by the phytopathogen Pseudomonas coronafaciens pv. garcae (Pcg) involves frequent spraying of coffee plantations with non-environmentally friendly and potentially bacterial resistance-promoting copper products or with kasugamycin hydrochloride. In this study we report a leap forward in the quest for a new ecofriendly approach, characterizing (both physicochemically and biologically) and testing both in vitro and ex vivo a new lytic phage for Pcg.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!