Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mds.25221 | DOI Listing |
Optogenetics has transformed the study of neural circuit function, but limitations in its application to species with large brains, such as non-human primates (NHPs), remain. A major challenge in NHP optogenetics is delivering light to sufficiently large volumes of deep neural tissue with high spatiotemporal precision, without simultaneously affecting superficial tissue. To overcome these limitations, we recently developed and tested in NHP cortex, the Utah Optrode Array (UOA).
View Article and Find Full Text PDFProc IEEE Int Symp Biomed Imaging
May 2024
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA.
Real-time dynamic MRI is important for visualizing time-varying processes in several applications, including cardiac imaging, where it enables free-breathing images of the beating heart without ECG gating. However, current real-time MRI techniques commonly face challenges in achieving the required spatio-temporal resolutions due to limited acceleration rates. In this study, we propose a deep learning (DL) technique for improving the estimation of stationary outer-volume signal from shifted time-interleaved undersampling patterns.
View Article and Find Full Text PDFHeliyon
July 2024
College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
Resting-state functional magnetic resonance imaging (rs-fMRI) is a non-invasive neuroimaging technique widely utilized in the research of Autism Spectrum Disorder (ASD), providing preliminary insights into the potential biological mechanisms underlying ASD. Deep learning techniques have demonstrated significant potential in the analysis of rs-fMRI. However, accurately distinguishing between healthy control group and ASD has been a longstanding challenge.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Kyoto University: Kyoto Daigaku, Graduate School of Engineering, JAPAN.
Controlling trap depth is crucial to improve photocatalytic activity, but designing such crystal structures has been challenging. In this study, we discovered that in 2D materials like BiOCl and Bi4NbO8Cl, composed of interleaved [Bi2O2]2+ and Cl- slabs, the trap depth can be controlled by manipulating the slab stacking structure. In BiOCl, oxygen vacancies (VO) create deep electron traps, while chlorine vacancies (VCl) produce shallow traps.
View Article and Find Full Text PDFComput Med Imaging Graph
December 2024
Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China; Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, China; Shanghai Engineering Research Center of Intelligent Imaging for Critical Brain Diseases, Shanghai, 200040, China; Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, 200040, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!