Enterotoxigenic Escherichia coli (ETEC) strains are a leading cause of morbidity and mortality due to diarrheal illness in developing countries. There is currently no effective vaccine against these important pathogens. Because genes modulated by pathogen-host interactions potentially encode putative vaccine targets, we investigated changes in gene expression and surface morphology of ETEC upon interaction with intestinal epithelial cells in vitro. Pan-genome microarrays, quantitative reverse transcriptase PCR (qRT-PCR), and transcriptional reporter fusions of selected promoters were used to study changes in ETEC transcriptomes. Flow cytometry, immunofluorescence microscopy, and scanning electron microscopy were used to investigate alterations in surface antigen expression and morphology following pathogen-host interactions. Following host cell contact, genes for motility, adhesion, toxin production, immunodominant peptides, and key regulatory molecules, including cyclic AMP (cAMP) receptor protein (CRP) and c-di-GMP, were substantially modulated. These changes were accompanied by visible changes in both ETEC architecture and the expression of surface antigens, including a novel highly conserved adhesin molecule, EaeH. The studies reported here suggest that pathogen-host interactions are finely orchestrated by ETEC and are characterized by coordinated responses involving the sequential deployment of multiple virulence molecules. Elucidation of the molecular details of these interactions could highlight novel strategies for development of vaccines for these important pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536156PMC
http://dx.doi.org/10.1128/IAI.00919-12DOI Listing

Publication Analysis

Top Keywords

pathogen-host interactions
12
enterotoxigenic escherichia
8
escherichia coli
8
expression surface
8
changes etec
8
interactions
5
etec
5
transcriptional modulation
4
modulation enterotoxigenic
4
coli virulence
4

Similar Publications

Protein-Protein Interactions (PPIs) are a key interface between virus and host, and these interactions are important to both viral reprogramming of the host and to host restriction of viral infection. In particular, viral-host PPI networks can be used to further our understanding of the molecular mechanisms of tissue specificity, host range, and virulence. At higher scales, viral-host PPI screening could also be used to screen for small-molecule antivirals that interfere with essential viral-host interactions, or to explore how the PPI networks between interacting viral and host genomes co-evolve.

View Article and Find Full Text PDF

Viruses engage in a variety of processes to subvert host defenses and create an environment amenable to replication. Here, using rotavirus as a prototype, we show that calcium conductance out of the endoplasmic reticulum by the virus encoded ion channel, , induces intercellular calcium waves that extend beyond the infected cell and contribute to pathogenesis. Viruses that lack the ability to induce this signaling show diminished viral shedding and attenuated disease in a mouse model of rotavirus diarrhea.

View Article and Find Full Text PDF

Differential recruitment drives pathogen-mediated competition between species in an amphibian chytridiomycosis system.

Ecol Appl

January 2025

Centre for Planetary Health and Food Security, and School of Environment and Science, Griffith University, Southport, Queensland, Australia.

Pathogens that infect multiple host species have an increased capacity to cause extinctions through parasite-mediated apparent competition. Given unprecedented and continuing losses of biodiversity due to Batrachochytrium dendrobatidis (Bd), the causative fungus of the amphibian skin disease chytridiomycosis, a robust understanding of the mechanisms driving cross-species infection dynamics is essential. Here, we used stage-structured, susceptible-infected compartmental models to explore drivers of Bd-mediated apparent competition between two sympatric amphibians, the critically endangered Litoria spenceri and the non-threatened Litoria lesueurii.

View Article and Find Full Text PDF

Current understanding of viral dynamics of SARS-CoV-2 and host responses driving the pathogenic mechanisms in COVID-19 is rapidly evolving. Here, we conducted a longitudinal study to investigate gene expression patterns during acute SARS-CoV-2 illness. Cases included SARS-CoV-2 infected individuals with extremely high viral loads early in their illness, individuals having low SARS-CoV-2 viral loads early in their infection, and individuals testing negative for SARS-CoV-2.

View Article and Find Full Text PDF

Background: The interactions between virus and the host immune response are nuanced and intricate. The cytokine response arguably plays a central role in dictating the outcome of virus infection, balancing inflammation and healing, which is crucial to resolving infection without destructive immunopathologies.

Summary: Early innate immune responses are key to the generation of a beneficial or detrimental immune response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!