Xylose oligomers are the intermediate products of xylan depolymerization into xylose monomers. An understanding of xylan depolymerization kinetics is important to improve the conversion of xylan into monomeric xylose and to minimize the formation of inhibitory products, thereby reducing ethanol production costs. The study of xylan depolymerization requires copious amount of xylose oligomers, which are expensive if acquired commercially. Our approach consisted of producing in-house oligomer material. To this end, birchwood xylan was used as the starting material and hydrolyzed in hot water at 200 °C for 60 min with a 4 % solids loading. The mixture of xylose oligomers was subsequently fractionated by a centrifugal partition chromatography (CPC) with a solvent system of butanol:methanol:water in a 5:1:4 volumetric ratio. Operating in an ascending mode, the butanol-rich upper phase (the mobile phase) eluted xylose oligomers from the water-rich stationary phase at a 4.89 mL/min flow rate for a total fractionation time of 300 min. The elution of xylose oligomers occurred between 110 and 280 min. The yields and purities of xylobiose (DP 2), xylotriose (DP 3), xylotetraose (DP 4), and xylopentaose (DP 5) were 21, 10, 14, and 15 mg/g xylan and 95, 90, 89, and 68 %, respectively. The purities of xylose oligomers from this solvent system were higher than those reported previously using tetrahydrofuran:dimethyl sulfoxide:water in a 6:1:3 volumetric ratio. Moreover, the butanol-based solvent system improved overall procedures by facilitating the evaporation of the solvents from the CPC fractions, rendering the purification process more efficient.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10295-012-1209-7 | DOI Listing |
FEBS J
October 2024
Leiden Institute of Chemistry, Leiden University, The Netherlands.
Bacillus circulans xylanase (BcX) from the glycoside hydrolase family 11 degrades xylan through a retaining, double-displacement mechanism. The enzyme is thought to hydrolyze glycosidic bonds in a processive manner and has a large, active site cleft, with six subsites allowing the binding of six xylose units. Such an active site architecture suggests that oligomeric xylose substrates can bind in multiple ways.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
August 2024
National Renewable Energy Laboratory, Golden, USA.
Background: Rapid monitoring of biomass conversion processes using techniques such as near-infrared (NIR) spectroscopy can be substantially quicker and less labor-, resource-, and energy-intensive than conventional measurement techniques such as gas or liquid chromatography (GC or LC) due to the lack of solvents and preparation methods, as well as removing the need to transfer samples to an external lab for analytical evaluation. The purpose of this study was to determine the feasibility of rapid monitoring of a biomass conversion process using NIR spectroscopy combined with multivariate statistical modeling, and to examine the impact of (1) subsetting the samples in the original dataset by process location and (2) reducing the spectral range used in the calibration model on model performance.
Results: We develop multivariate calibration models for the concentrations of soluble xylo-oligosaccharides (XOS), monomeric xylose, and total solids at multiple points in a biomass conversion process which produces and then purifies XOS compounds from sugar cane bagasse.
J Appl Phycol
December 2023
Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, SY23 3EE United Kingdom.
Unlabelled: Ulvan is a green macroalgal cell wall polysaccharide that has tremendous potential for valorisation due to its unique composition of sulphated rhamnose, glucuronic acid, iduronic acid and xylose. Several potential applications such as production of biofuels, bioplastics and other value-added products necessitate the breakdown of the polysaccharide to oligomers or monomers. Research on ulvan saccharifying enzymes has been continually increasing over the last decade, with the increasing focus on valorisation of seaweed biomass for a biobased economy.
View Article and Find Full Text PDFJ Sci Food Agric
October 2024
Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway.
Xylooligosaccharides (XOS) are considered a potent source of prebiotics for humans. The global prebiotic market is expanding in size, was valued at USD 6.05 billion in 2021, and is expected to grow at a 14.
View Article and Find Full Text PDFCarbohydr Polym
March 2024
Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece. Electronic address:
Acetyl esterases belonging to the carbohydrate esterase family 16 (CE16) is a growing group of enzymes, with exceptional diversity regarding substrate specificity and regioselectivity. However, further insight into the CE16 specificity is required for their efficient biotechnological exploitation. In this work, exo-deacetylase TtCE16B from Thermothelomyces thermophila was heterologously expressed and biochemically characterized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!