Biochemical characterization of cardiolipin synthase mutations associated with daptomycin resistance in enterococci.

Antimicrob Agents Chemother

Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, USA.

Published: January 2013

Daptomycin (DAP) resistance in enterococci has been linked to mutations in genes that alter the cell envelope stress response (CESR) (liaFSR) and changes in enzymes that directly affect phospholipid homeostasis, and these changes may alter membrane composition, such as that of cardiolipin synthase (Cls). While Cls substitutions are observed in response to DAP therapy, the effect of these mutations on Cls activity remains obscure. We have expressed, purified, and characterized Cls enzymes from both Enterococcus faecium S447 (residues 52 to 482; Cls447a) and Enterococcus faecalis S613 (residues 53 to 483; Cls613a) as well as Cls variants harboring a single-amino-acid change derived from DAP-resistant isolates of E. faecium. E. faecium Cls447a and E. faecalis Cls613a are tightly associated with the membrane and copurify with their substrate, phosphatidylglycerol (PG), and product, cardiolipin (CL). The amount of PG that copurifies with Cls is in molar excess to protein, suggesting that the enzyme localizes to PG-rich membrane regions. Both Cls447a(H215R) and Cls447a(R218Q) showed an increase in V(max) (μM CL/min/μM protein) from 0.16 ± 0.01 to 0.26 ± 0.02 and 0.26 ± 0.04, respectively, indicating that mutations associated with adaptation to DAP increase Cls activity. Modeling of Cls447a to Streptomyces sp. phospholipase D indicates that the adaptive mutations Cls447a(H215R) and Cls447a(R218Q) are proximal to the phospholipase domain 1 (PLD1) active site and near the putative nucleophile H217. As mutations to Cls are part of a larger genomic adaptation process, increased Cls activity is likely to be highly epistatic with other changes to facilitate DAP resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3535954PMC
http://dx.doi.org/10.1128/AAC.01743-12DOI Listing

Publication Analysis

Top Keywords

cls activity
12
cls
9
cardiolipin synthase
8
mutations associated
8
resistance enterococci
8
dap resistance
8
mutations cls
8
cls447ah215r cls447ar218q
8
mutations
6
biochemical characterization
4

Similar Publications

Glucosinolates (GSLs) are nitrogen/sulfur-containing glycosides widely present in the order of Brassicales, particularly in the Brassicaceae family. Camelina ( (L.) Crantz) is an oilseed plant belonging to this family.

View Article and Find Full Text PDF

ClsC protein encoded by a stress-responsive operon in Escherichia coli functions as a trans-acting activator of RNase III.

Int J Biol Macromol

January 2025

Department of Chemistry and Chemistry, Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.

RNase III, an endoribonuclease that cleaves double-stranded RNAs (dsRNAs), significantly impacts Escherichia coli (E. coli) adaptation by regulating global RNA gene expression. YmdB from E.

View Article and Find Full Text PDF

The emerging new generation of small-scaled acoustic microrobots is poised to expedite the adoption of microrobotics in biomedical research. Recent designs of these microrobots have enabled intricate bioinspired motions, paving the way for their real-world applications. We present a multiorifice design of air-filled spherical microrobots that convert acoustic wave energy to efficient propulsion through a resonant encapsulated microbubble.

View Article and Find Full Text PDF

Millions of individuals surviving a stroke have lifelong gait impairments that reduce their personal independence and quality of life. Reduced walking speed is one of the major problems limiting community mobility and reintegration. Previous studies have shown positive effect of robot-assisted gait training utilizing hip exoskeletons for individuals with gait impairments due to a stroke, leading to increased walking speed in post-treatment compared to pre-treatment assessments.

View Article and Find Full Text PDF

Enhanced bioaccessibility of cyclolinopeptides via zein-cyclodextrin nanoparticles: Simulated gastrointestinal digestion and cellular uptake study.

Food Chem

January 2025

Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China; Guangdong Joint International Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China. Electronic address:

Cyclolinopeptides (CLS) are hydrophobic cyclic peptides in flaxseed with multiple bioactive activities. This study developed zein (Z)-cyclodextrin (CD) binary nanoparticles (NPs) as an oral delivery system for CLS. Z-CD NP had a smaller diameter (D) and better encapsulation effect on CLS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!