Development of daptomycin (DAP) resistance in Enterococcus faecalis has recently been associated with mutations in genes encoding proteins with two main functions: (i) control of the cell envelope stress response to antibiotics and antimicrobial peptides (LiaFSR system) and (ii) cell membrane phospholipid metabolism (glycerophosphoryl diester phosphodiesterase and cardiolipin synthase [cls]). However, the genetic bases for DAP resistance in Enterococcus faecium are unclear. We performed whole-genome comparative analysis of a clinical strain pair, DAP-susceptible E. faecium S447 and its DAP-resistant derivative R446, which was recovered from a single patient during DAP therapy. By comparative whole-genome sequencing, DAP resistance in R446 was associated with changes in 8 genes. Two of these genes encoded proteins involved in phospholipid metabolism: (i) an R218Q substitution in Cls and (ii) an A292G reversion in a putative cyclopropane fatty acid synthase enzyme. The DAP-resistant derivative R446 also exhibited an S333L substitution in the putative histidine kinase YycG, a member of the YycFG system, which, similar to LiaFSR, has been involved in cell envelope homeostasis and DAP resistance in other Gram-positive cocci. Additional changes identified in E. faecium R446 (DAP resistant) included two putative proteins involved in transport (one for carbohydrate and one for sulfate) and three enzymes predicted to play a role in general metabolism. Exchange of the "susceptible" cls allele from S447 for the "resistant" one belonging to R446 did not affect DAP susceptibility. Our results suggest that, apart from the LiaFSR system, the essential YycFG system is likely to be an important mediator of DAP resistance in some E. faecium strains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3535923PMC
http://dx.doi.org/10.1128/AAC.01454-12DOI Listing

Publication Analysis

Top Keywords

dap resistance
20
enterococcus faecium
8
dap
8
resistance enterococcus
8
cell envelope
8
liafsr system
8
phospholipid metabolism
8
dap-resistant derivative
8
derivative r446
8
proteins involved
8

Similar Publications

gene mutation through CRISPR RNA-guided base editing weakens bacterial virulence and immune evasion.

Virulence

December 2025

Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.

The resistance of commonly used clinical antibiotics, such as daptomycin (DAP), has become increasingly serious in the fight against () infection. It is essential to explore key pathogenicity-driven genes/proteins in bacterial infection and antibiotics resistance, which contributes to develop novel therapeutic strategies against infections. The gene of , encoding 5'-nucleotidase (NT5), is nearly unknown for its function in drug resistance and bacterial infection.

View Article and Find Full Text PDF

Background: Metastatic castration-resistant prostate cancer (mCRPC) has a poor prognosis, necessitating the investigation of novel treatments and targets. This study evaluated JNJ-70218902 (JNJ-902), a T-cell redirector targeting transmembrane protein with epidermal growth factor-like and 2 follistatin-like domains 2 (TMEFF2) and cluster of differentiation 3, in mCRPC.

Patients And Methods: Patients who had measurable/evaluable mCRPC after at least one novel androgen receptor-targeted therapy or chemotherapy were eligible.

View Article and Find Full Text PDF

ZmHB53, a Maize Homeodomain-Leucine Zipper I Transcription Factor Family Gene, Contributes to Abscisic Acid Sensitivity and Confers Seedling Drought Tolerance by Promoting the Activity of ZmPYL4.

Plant Cell Environ

January 2025

State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Germplasm Resources in North China, Ministry of Education, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China.

Plant-specific homeodomain-leucine zipper I (HD-Zip I) transcription factors (TFs) crucially regulate plant drought tolerance. However, their specific roles in maize (Zea mays L.) regulating drought tolerance remain largely unreported.

View Article and Find Full Text PDF

Polymeric Anti-Antibiotic Microparticles to Prevent Antibiotic Resistance Evolution.

Small

January 2025

Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.

Vancomycin (VAN) and daptomycin (DAP) are among the last-resort antibiotics for treating multidrug-resistant Gram-positive bacterial infections. They are administered intravenously (IV); however, ≈5 - 10% of the total IV dose is released in the gastrointestinal (GI) tract via biliary excretion, driving resistance emergence in commensal Enterococcus faecium (E. faecium) populations.

View Article and Find Full Text PDF

VvATG18a participates in grape resistance to gray mold induced by BR signaling pathway.

Int J Biol Macromol

January 2025

College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:

Autophagy plays an important role in responding to necrotrophic pathogens and plant signal hormones. Brassinosteroids (BRs) are a class of natural steroidal phytohormones that effectively regulated the disease resistance responses in grape. However, the molecular mechanism of BR-autophagy networks responsible for activation of host defense against gray mold remained to be elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!