A novel calcium phosphate silicate bone cement (CPSC) was synthesized in a process, in which nanocomposite forms in situ between calcium silicate hydrate (C-S-H) gel and hydroxyapatite (HAP). The cement powder consists of tricalcium silicate (C(3)S) and calcium phosphate monobasic (CPM). During cement setting, C(3)S hydrates to produce C-S-H and calcium hydroxide (CH); CPM reacts with the CH to precipitate HAP in situ within C-S-H. This process, largely removing CH from the set cement, enhances its biocompatibility and bioactivity. The testing results of cell culture confirmed that the biocompatibility of CPSC was improved as compared to pure C(3)S. The results of XRD and SEM characterizations showed that CPSC paste induced formation of HAP layer after immersion in simulated body fluid for 7 days, suggesting that CPSC was bioactive in vitro. CPSC cement, which has good biocompatibility and low/no cytotoxicity, could be a promising candidate as biomedical cement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10856-012-4794-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!