Optically absorbing nanoparticle mediated cell membrane permeabilization.

Opt Lett

Department of Biological Engineering, University of Missouri, Columbia, Missouri 65201, USA.

Published: November 2012

Membrane permeabilization is imperative for gene and drug delivery systems, along with other cell manipulation methods, since the average eukaryotic cell membrane is not permeable to polar and large nonpolar molecules. Antibody conjugated optically absorbing gold nanospheres are targeted to the cell membrane of T47D breast cancer cell line and irradiated with 5 ns pulse, 20 Hz, 532 nm light to increase membrane permeability. Up to 90% permeabilization with less than 6% death is reported at radiant exposures up to 10 times lower than those of other comparable studies.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.37.004474DOI Listing

Publication Analysis

Top Keywords

cell membrane
12
optically absorbing
8
membrane permeabilization
8
cell
5
membrane
5
absorbing nanoparticle
4
nanoparticle mediated
4
mediated cell
4
permeabilization membrane
4
permeabilization imperative
4

Similar Publications

Putranjiva roxburghii is an important medicinal plant utilized for remedy of female reproductive ailments. Its seed extract is being used as a uterine health booster due to the presence of several pharmaceutically important phytochemicals. However, the presence of phytochemicals in its leaf is still unexplored.

View Article and Find Full Text PDF

The roles of mitochondria in global and local intracellular calcium signalling.

Nat Rev Mol Cell Biol

January 2025

MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA.

Activation of Ca channels in Ca stores in organelles and the plasma membrane generates cytoplasmic calcium ([Ca]) signals that control almost every aspect of cell function, including metabolism, vesicle fusion and contraction. Mitochondria have a high capacity for Ca uptake and chelation, alongside efficient Ca release mechanisms. Still, mitochondria do not store Ca in a prolonged manner under physiological conditions and lack the capacity to generate global [Ca] signals.

View Article and Find Full Text PDF

The Low Density Lipoprotein receptors (LDLRs) gene family includes 15 receptors: very low-density lipoprotein receptor (VLDLR), LDLR, Sorting-related receptor with A-type repeats (SORLA), and 12 LDL receptor-related proteins (LRPs): LRP1, LRP1B, LRP2, LRP3, LRP4, LRP5, LRP6, LRP8, LRP10, LRP11, LRP12, LRP13. Most of these are involved in the transduction of key signals during embryonic development and in the regulation of cholesterol homeostasis. In oviparous animals, the VLDL receptor is also known as VTGR since it facilitates the uptake of vitellogenin in ovary.

View Article and Find Full Text PDF

Lymphangiogenesis is vital for tissue fluid homeostasis, immune function, and lipid absorption. Abnormal lymphangiogenesis has been implicated in several diseases such as cancers, inflammatory, and autoimmune diseases. In this study, we elucidate the role of tsRNA-0032 in lymphangiogenesis and its molecular mechanism.

View Article and Find Full Text PDF

Axons in the mammalian brain show significant diversity in myelination motifs, displaying spatial heterogeneity in sheathing along individual axons and across brain regions. However, its impact on neural signaling and susceptibility to injury remains poorly understood. To address this, we leveraged cable theory and developed model axons replicating the myelin sheath distributions observed experimentally in different regions of the mouse central nervous system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!